Geometria Complessa e Geometria Differenziale
Geometria Complessa e Geometria Differenziale
home | mail | papers | authors | news | seminars | events | open positions | login

Filling multiples of embedded curves

Robert Young

created by daniele on 08 Jun 2015

10 jun 2015 -- 17:30

Sala Seminari, DM, Pisa


Filling a curve with an oriented surface can sometimes be "cheaper by the dozen". For example, L. C. Young constructed a smooth curve drawn on a projective plane in $\mathbb{R}^n$ which is only about 1.5 times as hard to fill twice as it is to fill once and asked whether this ratio can be bounded below. We will use methods from geometric measure theory to answer this question and pose some open questions about systolic inequalities for surfaces embedded in $\mathbb{R}^n$.

Credits | Cookie policy | HTML 5 | CSS 2.1