Geometria Complessa e Geometria Differenziale
Geometria Complessa e Geometria Differenziale
home | mail | papers | authors | news | seminars | events | open positions | login

Homogeneous G-structures

Luca Vitagliano

created by tortorella on 01 Nov 2021

5 nov 2021 -- 15:00

Geometry and Topology Seminar at Virginia Commonwealth University


G-structures unify several interesting geometries including: almost complex, Riemannian, almost symplectic geometry, etc., the integrable versions of which being complex, flat Riemannian, symplectic geometry, etc. Contact manifolds are odd dimensional analogues of symplectic manifolds but, despite this, there is no natural way to understand them as manifolds with an ordinary integrable G-structure. In this talk, we present a possible solution to this discrepancy. Our proposal is based on a new notion of homogeneous G-structures. Interestingly, besides contact, the latter include other nice (old and new) geometries including: cosymplectic, almost contact, and a curious “homogeneous version” of Riemannian geometry. This is joint work with A. G. Tortorella and O. Yudilevich.

Credits | Cookie policy | HTML 5 | CSS 2.1