Geometria Complessa e Geometria Differenziale
Geometria Complessa e Geometria Differenziale
home | mail | papers | authors | news | seminars | events | open positions | login

Discrete Gaussian distributions via theta functions

Daniele Agostini

created by daniele on 18 May 2018

28 may 2018 -- 12:00

Aula Tricerri, DiMaI, Firenze

Abstract.

Il seminario ha natura interdisciplinare ed utilizza tecniche di Geometria Algebrica in un contesto Probabilistico e Statistico.

Abstract: Maximum entropy probability distributions are important for information theory and relate directly to exponential families in statistics. Having the property of maximizing entropy can be used to define a discrete analogue of the classical continuous Gaussian distribution. We present a parametrization of such a density using the Riemann Theta function, use it to derive fundamental properties and exhibit strong connections to the study of abelian varieties in algebraic geometry. This is joint work with Carlos Améndola (TU Munich).

Credits | Cookie policy | HTML 5 | CSS 2.1