Geometria Complessa e Geometria Differenziale
Geometria Complessa e Geometria Differenziale
home | mail | papers | authors | news | seminars | events | open positions | login

G. Catino - P. Mastrolia - Dario Daniele Monticelli

Gradient Ricci solitons with vanishing conditions on Weyl

created by catino on 17 Oct 2023



Inserted: 17 oct 2023
Last Updated: 17 oct 2023

Year: 2016

ArXiv: 1602.00534 PDF


We classify complete gradient Ricci solitons satisfying a fourth-order vanishing condition on the Weyl tensor, improving previously known results. More precisely, we show that any $n$-dimensional ($n\geq 4$) gradient shrinking Ricci soliton with fourth order divergence-free Weyl tensor is either Einstein, or a finite quotient of $N^{n-k}\times \mathbb{R}^k$, $(k > 0)$, the product of a Einstein manifold $N^{n-k}$ with the Gaussian shrinking soliton $\mathbb{R}^k$. The technique applies also to the steady and expanding cases in all dimensions. In particular, we prove that a three dimensional gradient steady soliton with third order divergence-free Cotton tensor, i.e. with vanishing double divergence of the Bach tensor, is either flat or isometric to the Bryant soliton.

Credits | Cookie policy | HTML 5 | CSS 2.1