Geometria Complessa e Geometria Differenziale
Geometria Complessa e Geometria Differenziale
home | mail | papers | authors | news | seminars | events | open positions | login

A. Altavilla - G. Sarfatti

Slice-Polynomial Functions and Twistor Geometry of Ruled Surfaces in $\mathbb{CP}^3$

created by altavilla on 03 Jan 2018
modified by sarfatti on 19 Feb 2020


Published Paper

Inserted: 3 jan 2018
Last Updated: 19 feb 2020

Journal: Mathematische Zeitschrift
Volume: 291
Year: 2019

ArXiv: 1712.09946 PDF
Links: arXiv


In the present paper we introduce the class of slice-polynomial functions: slice regular functions {defined over the quaternions, outside the real axis,} whose restriction to any complex half-plane is a polynomial. These functions naturally emerge in the twistor interpretation of slice regularity introduced in \cite{gensalsto} and developed in \cite{AAtwistor}. To any slice-polynomial function $P$ we associate its {\em companion} $P^\vee$ and its {\em extension} to the real axis $P_\mathbb{R}$, that are quaternionic functions naturally related to $P$. Then, using the theory of twistor spaces, we are able to show that for any quaternion $q$ the {cardinality of simultaneous} pre-images of $q$ via $P$, $P^\vee$ and $P_\mathbb{R}$ is generically constant, giving a notion of degree. With the brand new tool of slice-polynomial functions, we {compute} the twistor discriminant locus of a cubic scroll $\mathcal{C}$ in $\mathbb{CP}^3$ and we conclude by giving some qualitative results on the complex structures induced by $\mathcal{C}$ via the twistor projection.

Tags: SIR2014-AnHyC

Credits | Cookie policy | HTML 5 | CSS 2.1