On minimal Legendrian submanifolds of Sasaki-Einstein manifolds

David Petrecca

(joint work with S. Calamai, [Internat. J. Math., 2014])

Dipartimento di Matematica - Università di Pisa
Levico Terme, 19-23 ottobre 2014

Outline

(1) Sasakian Manifolds
(2) Minimal Legendrian submanifolds
(3) Main result 1

4 Deformations of minimal Legendrian submanifolds
(5) Proof of result
(6) Main result 2
(7) Open questions

Sasakian manifolds

Definition

(M, g) Riemannian is Sasakian if $C(M)=M \times \mathbb{R}^{+}$with warped metric $\bar{g}=r^{2} g+d r^{2}$ is Kähler $(C(M), \bar{g}, J)$.

Tensors on M :

- $\eta=\left.d^{c} \log r\right|_{r=1}$ is a contact form with contact distribution $D=$ ker η;
- $\xi=J r \partial_{r} \in \Gamma(T M)$ is its Reeb field $\left(\eta(\xi)=1, \iota_{\xi} d \eta=0\right)$;
- $T M=D \oplus L_{\xi}$;
- $\Phi= \begin{cases}\left.J\right|_{D} & \text { on } D \\ 0 & \text { on } \xi\end{cases}$

It holds $\Phi^{2}=-\mathrm{id}+\xi \otimes \eta$ and $g(\Phi \cdot, \Phi \cdot)=g+\eta \otimes \eta$;
M endowed with 4-ple (g, η, ξ, Φ) is normal contact metric. Then

- $\left(D,\left.\Phi\right|_{D}\right)$ is a CR structure on M;
- $d \eta=g(\Phi \cdot, \cdot)$ and $\left(D,\left.\Phi\right|_{D}, d \eta\right)$ is a transverse Kähler structure on M with metric $g^{T}=\left.g\right|_{D \times D}$.

$(C(M), \bar{g})$ Kähler cone

(M, g) Sasakian

g^{\top} transverse Kähler metric

Theorem
g is Sasaki-Einstein iff g^{T} is Kähler-Einstein iff \bar{g} is Ricci-flat.

Example: standard sphere

$M=S^{2 n+1} \subset \mathbb{C}^{n+1}$ with

$$
\begin{aligned}
& \eta=y_{j} d x_{j}-\left.x_{j} d y_{j}\right|_{S^{2 n+1}} \\
& \xi=y_{j} \partial_{x_{j}}-\left.x_{j} \partial_{y_{j}}\right|_{S^{2 n+1}} \\
& \Phi= \begin{cases}\left.J\right|_{\text {ker } \eta} & \text { on ker } \eta \\
0 & \text { on } \xi\end{cases} \\
& g=\text { round metric }
\end{aligned}
$$

Riemannian submersion onto Kähler manifold (space of leaves of ξ)

Example of regular Sasakian manifold

Minimal Legendrian submanifolds

Definition

Let $\left(M^{2 n+1}, \eta\right)$ be contact. A Legendrian submanifold is a n-dimensional submanifold $i: L \hookrightarrow M$ such that $i^{*} \eta=0$.

Lê and Wang have characterized the minimal Legendrian submanifolds of $S^{2 n+1}$.
$L^{n} \subset S^{2 n+1}$ minimal submanifold, $M \in \mathfrak{s u}(n+1)$ and $f_{M}(x)=\langle M x, J x\rangle$ as function on $L \subset S^{2 n+1} \subset \mathbb{C}^{n+1}$.
They prove:

Theorem (Lê-Wang, 2001)

L is Legendrian iff f_{M} is an eigenfunction of $\Delta_{L}=\delta d$ with eigenvalue $2 n+2$, which has multiplicity $\geq \frac{1}{2} n(n+3)$. Moreover if multiplicity $=\frac{1}{2} n(n+3)$ then L is totally geodesic in $S^{2 n+1}$.

They use very specific arguments for minimal submanifolds of spheres.

Main result

We prove a partial generalization of Lê-Wang for η-Sasaki-Einstein manifolds.

Definition

(M, η, g) Sasakian is η-Sasaki-Einstein if there exists $A \in \mathbb{R}$ s.t.

$$
\operatorname{Ric}_{g}=A g+(2 n-A) \eta \otimes \eta
$$

Main result

Let $\mathfrak{g} \neq\langle\xi\rangle$ be the infinitesimal Sasakian automorphism algebra (contactomorphic Killing fields)
L^{n} minimal submanifold.
For $X \in \mathfrak{g}$ consider the functions on L

$$
f_{X}=\eta(X)-\frac{1}{\operatorname{vol}(L)} \int_{L} \eta(X) d v
$$

Can be seen as contact moment map for the action of Sasaki transformations.
We prove

Theorem (Calamai, -)

Let M be $\eta-S-E$ and L is minimal Legendrian.
Then $\Delta_{L} f_{X}=(A+2) f_{X}$ and

$$
m_{L}(A+2) \geq \operatorname{dim} \mathfrak{g}-\frac{1}{2} n(n+1)-1
$$

For the sphere: $\mathfrak{g}=\mathfrak{u}(n+1) \ni Y$ and $\langle Y x, J x\rangle=\left.\eta(Y)\right|_{x}$.

We also prove the following rigidity result, in the regular case.

Theorem (Calamai, -)

M is a regular S-E manifold, L minimal Legendrian and

$$
m_{L}(2 n+2)=\operatorname{dim} \mathfrak{g}-\frac{1}{2} n(n+1)-1
$$

Then L is totally geodesic in M, which is a Sasaki-Einstein circle bundle over $\mathbb{C P}^{n}$ with Fubini-Study metric. In particular if M is simply connected then $M=S^{2 n+1}$.

Geometric remark

For $X \in \mathfrak{g}$ the map $\eta(X)$ is the contact moment map for the Aut (M)-action.
In general if G acts by contactomorphisms on (M, η) we can extend the action to the symplectization $\left(C(M), d\left(r^{2} \eta\right)\right)$ by $g(r, p)=(r, g p)$.
G acts on $C(M)$ in a Hamiltonian fashion with moment map $\varphi: C(M) \rightarrow \mathfrak{g}^{*}$ that can be taken to be $X \mapsto r^{2} \eta(X)$.
The restriction $\left.\varphi\right|_{\{r=1\}}$ is called the contact moment map.

Minimal Legendrian submanifolds

$i: L \hookrightarrow M$ be Legendrian in a Sasakian manifold

Proposition (Ono)

There is an isomorphism

$$
\begin{aligned}
\chi: \Gamma(N L) & \longrightarrow C^{\infty}(L) \oplus \Omega^{1}(L) \\
V & \longmapsto\left(\eta(V),-\frac{1}{2} i^{*}(\iota \vee d \eta)\right)
\end{aligned}
$$

If M is regular over a Kähler base (B, ω) with projection π then we have the well known

Proposition (Reckziegel)

$L \subset M$ is Legendrian iff $\tilde{L}=\pi(L)$ is Lagrangian $\left((\pi \circ i)^{*} \omega=0\right)$ and $\pi: L \rightarrow \widetilde{L}$ is a finite cover.
Moreover L is minimal or totally geodesic iff \widetilde{L} is.

Deformations of minimal Legendrian submanifolds

Let $i: L \hookrightarrow M$ be minimal Legendrian.

Definition

A smooth family of minimal Legendrian immersions $i_{t}: L \rightarrow M$ is a family of maps $F:[0,1] \times L \rightarrow M$ such that for each t the map $i_{t}=F(t, \cdot): L \rightarrow M$ is a minimal Legendrian immersion.

Every smooth family points out a vector field W_{t} on L given at p by

$$
\left.W_{t}\right|_{p}=F_{*}\left(\left.\frac{\partial}{\partial t}\right|_{(t, p)}\right)
$$

Infinitesimal Legendrian deformations:

Proposition

A family of immersions is Legendrian if and only if the normal component V_{t} of W_{t} satisfies

$$
V_{t}=\chi^{-1}\left(\eta\left(V_{t}\right), \frac{1}{2} d \eta\left(V_{t}\right)\right)
$$

Deformations of minimal Legendrian submanifolds

For η-Sasaki-Einstein manifolds we can describe the whole space of infinitesimal deformations

Proposition (Ohnita)

Let $i: L \rightarrow M$ be a minimal Legendrian submanifold in an η-Sasaki-Einstein manifold with constant A. Then the vector space of infinitesimal minimal Legendrian deformations is identified with

$$
\operatorname{Def}(L)=\mathbb{R} \oplus\left\{f \in C^{\infty}(L): \Delta_{L} f=(A+2) f\right\}
$$

where Δ_{L} denotes the Laplacian of L with the induced metric.
One-parameter family $\varphi_{t} \subset$ Aut (M) gives minimal Legendrian deformation

$$
i_{t}=\left.\varphi_{t}\right|_{i(L)}: i(L) \rightarrow M
$$

called trivial.
Infinitesimally are given by X^{\perp} with $X \in \mathfrak{a u t}(M)$.

Proof of Ohnita's prop follows from two facts:
(1) Infinitesimal minimal deformations are parameterized by ker \mathcal{J}, where $\mathcal{J}=$ Jacobi operator from Riemannian geometry.
(2) Infinitesimal Legendrian deformations are parameterized by

$$
C^{\infty}(L) \simeq\left\{\left(f, \frac{1}{2} d f\right): f \in C^{\infty}(L)\right\}
$$

Proof of Theorem 1
(1) Take $\mathfrak{g} \ni X=X_{1}+X_{2} \in \Gamma(T L) \oplus \Gamma(N L)$.
(2) X_{2} defines trivial minimal Legendrian deformation
(3) $\chi\left(X_{2}\right)=\left(\eta(X), \alpha_{X}\right) \in \chi(\operatorname{ker} \mathcal{J})$
(9) So $\Delta_{L} \eta(X)-(A+2) \eta(X)=$ const \Longrightarrow
f_{X} is eigenfunction of eigenvalue $A+2$.

Proof of multiplicity assertion

We have said that families of ambient transformations give trivial deformations:

$$
\begin{gathered}
\alpha: \mathfrak{g} \rightarrow \operatorname{Def}(L) \\
\text { and } \operatorname{ker} \alpha=\left\{X \in \mathfrak{g}:\left.X\right|_{L} \in \Gamma(T L)\right\} \subset \mathfrak{i s o}(L) \text { So }
\end{gathered}
$$

$$
\begin{aligned}
1+\operatorname{dim} E_{A+2} & \geq \operatorname{dim} \alpha(\mathfrak{g}) \\
& =\operatorname{dim} \mathfrak{g}-\operatorname{dim} \operatorname{ker} \alpha \\
& \geq \operatorname{dim} \mathfrak{g}-\operatorname{dim} \mathfrak{s o}(n+1) \\
& =\operatorname{dim} \mathfrak{g}-\frac{n(n+1)}{2}
\end{aligned}
$$

Let $\pi: M \rightarrow B$ be regular Sasaki-Einstein onto Kähler-Einstein. Well known fact: M is S-E iff B is K-E with constant $2 n+2$.
(1) Equality \Longrightarrow equality above;
(2) Regularity $\Longrightarrow \pi(L) \subset B$ is Lagrangian with large isometry (actually homogeneous) K / H with $\mathfrak{k}=\mathfrak{s o}(n+1)$;
(3) K acts on B by with cohomogeneity one with two singular orbits: $K p$ (Lagrangian) and $K q$;
(9) Homogeneous Lagrangians in K-E (Bedulli-Gori) \Longrightarrow $\Omega=K^{\mathbb{C}} p$ is open Stein and that its complement has complex codim 1 and is another single $K^{\mathbb{C}}$-orbit (B is two-orbit Kähler);
(6) Akhiezer classification of 2-orbit Kähler $\Omega \cup A$ with Ω affine and A complex hypersurface

$$
\Longrightarrow \mathbb{R} \mathbb{P}^{n} \subset \mathbb{C P}^{n} \text { or } S^{n} \subset Q_{n}
$$

(6) Explicit computation of multiplicity to exclude hyperquadrics:

- One possible way to have $S^{n} \subset Q_{n}$ (Chen-Nagano)
- Compute induced metric on S^{n} from K-E metric on Q_{n} $\left(\frac{n}{2 n+2} \times\right.$ round metric);
- The multiplicity of the eigenvalue $2 n+2$ does not attain lower bound!
(3) $\pi(L) \subset B$ totally geodesic $\Longleftrightarrow L \subset M$ totally geodesic.

Other family of eigenfunctions

View $M=\{r=1\} \subset M \times \mathbb{R}^{+}$and let
$\mathfrak{k}=$ infinitesimal Kähler automorphisms of cone
L minimal Legendrian
For $K \in \mathfrak{k}$ construct function on L

$$
h_{K}=\bar{g}\left(M_{K} \partial_{r}, J \partial_{r}\right)
$$

where $M_{K}=\bar{\nabla} K+\frac{1}{2 n+2} \operatorname{div}(J K) J$.
Then we prove

Theorem (Calamai, -)

M Sasaki-Einstein, L minimal Legendrian, then

$$
\Delta_{L} h_{K}=(2 n+2) h_{K}
$$

This family generalizes previous f_{X} as $\mathfrak{g} \subset \mathfrak{k}$.

Other family of eigenfunctions

$$
\begin{array}{cc}
\text { Lê-Wang } & \text { Our case } \\
f_{M}(x)=\langle M x, J x\rangle & h_{K}(p)=\left.\bar{g}\left(M_{K} \partial_{r}, J \partial_{r}\right)\right|_{(p, 1)} \\
\langle\cdot, \cdot\rangle & \bar{g} \\
\text { point } \longleftrightarrow \text { position vector } & \left.p \in M \longleftrightarrow \partial_{r}\right|_{(p, 1)} \in T C(M) \\
\xi_{x}=J x & \xi_{p}=\left.J \partial_{r}\right|_{(p, 1)} \\
M x \in \mathbb{C}^{n+1} & M_{K} \partial_{r} \in T C(M)
\end{array}
$$

Other family of eigenfunctions

- For $S^{2 n+1}$ the cone is $\mathbb{C}^{n+1} \backslash\{0\}$
- Take $M \in \mathfrak{s u}(n+1)$
- Linear field $K: x \mapsto M x$ is Killing and holomorphic
- Then $\bar{\nabla}_{y} K=M y$ and $\operatorname{div}(J K)=0$,

So $M_{K}(y)=M y$ and

$$
\left.\bar{g}\left(M_{K} \partial_{r}, J \partial_{r}\right)\right|_{(y, 1)}=\langle M y, K y\rangle
$$

Legendrian implies that a local ON frame $\left\{e_{i}\right\}$ of L can be extended to an ON frame $\left\{\frac{1}{r} e_{i}, \frac{1}{r} J e_{i}, \frac{1}{r} \xi, \partial_{r}\right\}$ of $C(M)$;
Minimality implies that intrinsic Laplacian $=$ extrinsic Laplacian

$$
\Delta_{L} f=-\left.\sum_{i} \nabla d f\left(e_{i}, e_{i}\right)\right|_{L}-\left.H \cdot f\right|_{L}
$$

\bar{g} Ricci-flat implies that M_{K} has similar properties of the M of Lê-Wang.

$$
\begin{aligned}
f & :(p, r) \longmapsto \bar{g}\left(M_{K} \partial_{r}, J \partial_{r}\right) \\
M_{K} & =\bar{\nabla} K+\frac{1}{2 n+2} \operatorname{div}(J K) J
\end{aligned}
$$

Step $1 M_{K}$ is skew-symmetric, $\operatorname{tr} J M_{K}=0$ and $\bar{\nabla} M_{K}=\overline{\operatorname{Rm}}(\cdot, K)$; Step $2 \overline{\mathrm{Rm}}(\cdot, \cdot, \cdot, \cdot)$ vanishes along certain directions;
Step 3 Finally compute

$$
\begin{aligned}
\left.\Delta_{L} f\right|_{L} & =-\left.\nabla d f\left(e_{i}, e_{i}\right)\right|_{L}=-\left.\left(e_{i} \cdot e_{i} \cdot f-\nabla_{e_{i}} e_{i} \cdot f\right)\right|_{L} \\
& =\left.(2 n+2) f\right|_{L}
\end{aligned}
$$

Open questions

(1) Let M Sasakian with big enough automorphism group and L minimal with f_{X} or h_{K} as eigenfunctions of the Laplacian. Can we conclude that L is Legendrian?
(2) Do totally geodesic L attain lower bound?
(3) Remove regularity assumption in rigidity result;
(9) Give a geometric meaning to the family $\left\{h_{K}: K \in \mathfrak{k}\right\}$.

Thank you!

