On minimal Legendrian submanifolds of Sasaki-Einstein manifolds

David Petrecca (joint work with S. Calamai, [Internat. J. Math., 2014])

Dipartimento di Matematica - Università di Pisa

Levico Terme, 19-23 ottobre 2014

Sasakian Manifolds

- 2 Minimal Legendrian submanifolds
- 3 Main result 1
- 4 Deformations of minimal Legendrian submanifolds
- 5 Proof of result
- 6 Main result 2

Sasakian manifolds

Definition

(M,g) Riemannian is Sasakian if $C(M) = M \times \mathbb{R}^+$ with warped metric $\overline{g} = r^2g + dr^2$ is Kähler $(C(M), \overline{g}, J)$.

Tensors on *M*:

- η = d^c log r|_{r=1} is a contact form with contact distribution D = ker η;
- $\xi = Jr\partial_r \in \Gamma(TM)$ is its Reeb field $(\eta(\xi) = 1, \iota_{\xi}d\eta = 0);$

•
$$TM = D \oplus L_{\xi};$$

• $\Phi = \begin{cases} J|_D & \text{on } D \end{cases}$

0 on ξ It holds $\Phi^2 = -id + \xi \otimes \eta$ and $g(\Phi, \Phi) = g + \eta \otimes \eta$; *M* endowed with 4-ple (g, η, ξ, Φ) is *normal contact metric*. Then

- $(D, \Phi|_D)$ is a CR structure on M;
- dη = g(Φ·, ·) and (D, Φ|_D, dη) is a transverse Kähler structure on M with metric g^T = g|_{D×D}.

The Kähler sandwich

$(C(M), \overline{g})$ Kähler cone

(M,g) Sasakian

g^{T} transverse Kähler metric

Theorem

g is Sasaki-Einstein iff g^T is Kähler-Einstein iff \overline{g} is Ricci-flat.

Example: standard sphere

 $M = S^{2n+1} \subset \mathbb{C}^{n+1}$ with

$$\eta = y_j dx_j - x_j dy_j |_{S^{2n+1}}$$
$$\xi = y_j \partial_{x_j} - x_j \partial_{y_j} |_{S^{2n+1}}$$
$$\Phi = \begin{cases} J|_{\ker \eta} & \text{on } \ker \eta \\ 0 & \text{on } \xi \end{cases}$$
$$g = \text{round metric}$$

Riemannian submersion onto Kähler manifold (space of leaves of ξ)

$$(S^{2n+1},g)$$

$$S^{1} \downarrow$$

$$(\mathbb{CP}^{n},g_{\mathsf{FS}})$$

Example of regular Sasakian manifold

Minimal Legendrian submanifolds

Definition

Let (M^{2n+1}, η) be contact. A Legendrian submanifold is a *n*-dimensional submanifold $i : L \hookrightarrow M$ such that $i^*\eta = 0$.

Lê and Wang have characterized the minimal Legendrian submanifolds of S^{2n+1} . $L^n \subset S^{2n+1}$ minimal submanifold, $M \in \mathfrak{su}(n+1)$ and $f_M(x) = \langle Mx, Jx \rangle$ as function on $L \subset S^{2n+1} \subset \mathbb{C}^{n+1}$. They prove:

Theorem (Lê-Wang, 2001)

L is Legendrian iff f_M is an eigenfunction of $\Delta_L = \delta d$ with eigenvalue 2n + 2, which has multiplicity $\geq \frac{1}{2}n(n+3)$. Moreover if multiplicity $= \frac{1}{2}n(n+3)$ then *L* is totally geodesic in S^{2n+1} .

They use very specific arguments for minimal submanifolds of spheres.

We prove a partial generalization of Lê-Wang for $\eta\text{-}\mathsf{Sasaki}\text{-}\mathsf{Einstein}$ manifolds.

Definition

 (M, η, g) Sasakian is η -Sasaki-Einstein if there exists $A \in \mathbb{R}$ s.t.

$$\operatorname{Ric}_g = Ag + (2n - A)\eta \otimes \eta.$$

Main result

Let $\mathfrak{g} \neq \langle \xi \rangle$ be the infinitesimal Sasakian automorphism algebra (contactomorphic Killing fields)

 L^n minimal submanifold.

For $X \in \mathfrak{g}$ consider the functions on L

$$f_X = \eta(X) - \frac{1}{\operatorname{vol}(L)} \int_L \eta(X) dv.$$

Can be seen as contact moment map for the action of Sasaki transformations.

We prove

Theorem (Calamai, –)

Let M be η -S-E and L is minimal Legendrian. Then $\Delta_L f_X = (A+2)f_X$ and

$$m_L(A+2)\geq \dim\mathfrak{g}-\frac{1}{2}n(n+1)-1.$$

For the sphere: $\mathfrak{g} = \mathfrak{u}(n+1) \ni Y$ and $\langle Yx, Jx \rangle = \eta(Y)|_x$.

We also prove the following rigidity result, in the regular case.

Theorem (Calamai, –)

M is a regular S-E manifold, L minimal Legendrian and

$$m_L(2n+2) = \dim \mathfrak{g} - \frac{1}{2}n(n+1) - 1.$$

Then L is totally geodesic in M, which is a Sasaki-Einstein circle bundle over \mathbb{CP}^n with Fubini-Study metric. In particular if M is simply connected then $M = S^{2n+1}$.

For $X \in \mathfrak{g}$ the map $\eta(X)$ is the *contact moment map* for the Aut(*M*)-action.

In general if G acts by contactomorphisms on (M, η) we can extend the action to the symplectization $(C(M), d(r^2\eta))$ by g(r, p) = (r, gp). G acts on C(M) in a Hamiltonian fashion with moment map $\varphi : C(M) \to \mathfrak{g}^*$ that can be taken to be $X \mapsto r^2\eta(X)$. The restriction $\varphi|_{\{r=1\}}$ is called the *contact moment map*.

Minimal Legendrian submanifolds

$i: L \hookrightarrow M$ be Legendrian in a Sasakian manifold

Proposition (Ono)

There is an isomorphism

$$\chi: \Gamma(NL) \longrightarrow C^{\infty}(L) \oplus \Omega^{1}(L)$$
$$V \longmapsto \left(\eta(V), -\frac{1}{2}i^{*}(\iota_{V}d\eta)\right)$$

If *M* is regular over a Kähler base (B, ω) with projection π then we have the well known

Proposition (Reckziegel)

 $L \subset M$ is Legendrian iff $\tilde{L} = \pi(L)$ is Lagrangian $((\pi \circ i)^* \omega = 0)$ and $\pi : L \to \tilde{L}$ is a finite cover. Moreover L is minimal or totally geodesic iff \tilde{L} is.

Deformations of minimal Legendrian submanifolds

Let $i: L \hookrightarrow M$ be minimal Legendrian.

Definition

A smooth family of minimal Legendrian immersions $i_t : L \to M$ is a family of maps $F : [0,1] \times L \to M$ such that for each t the map $i_t = F(t, \cdot) : L \to M$ is a minimal Legendrian immersion.

Every smooth family points out a vector field W_t on L given at p by

$$\mathcal{W}_t|_{p} = F_*\left(\frac{\partial}{\partial t}\Big|_{(t,p)}\right).$$

Infinitesimal Legendrian deformations:

Proposition

A family of immersions is Legendrian if and only if the normal component V_t of W_t satisfies

$$V_t = \chi^{-1}\left(\eta(V_t), \frac{1}{2}d\eta(V_t)\right)$$

Deformations of minimal Legendrian submanifolds

For $\eta\text{-}\mathsf{Sasaki}\text{-}\mathsf{Einstein}$ manifolds we can describe the whole space of infinitesimal deformations

Proposition (Ohnita)

Let $i : L \to M$ be a minimal Legendrian submanifold in an η -Sasaki-Einstein manifold with constant A. Then the vector space of infinitesimal minimal Legendrian deformations is identified with

$$\mathsf{Def}(L) = \mathbb{R} \oplus \{f \in C^{\infty}(L) : \Delta_L f = (A+2)f\}$$

where Δ_L denotes the Laplacian of L with the induced metric.

One-parameter family $\varphi_t \subset Aut(M)$ gives minimal Legendrian deformation

$$i_t = \varphi_t|_{i(L)} : i(L) \to M,$$

called *trivial*. Infinitesimally are given by X^{\perp} with $X \in \mathfrak{aut}(M)$. Proof of Ohnita's prop follows from two facts:

- Infinitesimal minimal deformations are parameterized by ker \mathcal{J} , where \mathcal{J} = Jacobi operator from Riemannian geometry.
- Infinitesimal Legendrian deformations are parameterized by $C^{\infty}(L) \simeq \left\{ \left(f, \frac{1}{2} df \right) : f \in C^{\infty}(L) \right\}$

Proof of Theorem 1

- Take $\mathfrak{g} \ni X = X_1 + X_2 \in \Gamma(TL) \oplus \Gamma(NL)$.
- **2** X_2 defines trivial minimal Legendrian deformation

• So $\Delta_L \eta(X) - (A+2)\eta(X) = \text{const} \Longrightarrow f_X$ is eigenfunction of eigenvalue A+2.

Proof of multiplicity assertion

We have said that families of ambient transformations give trivial deformations:

 $\alpha:\mathfrak{g}\to\mathsf{Def}(L)$ and ker $\alpha=\{X\in\mathfrak{g}:X|_L\in\Gamma(TL)\}\subset\mathfrak{iso}(L)$ So

$$\begin{array}{l} 1 + \dim E_{A+2} \geq \dim \alpha(\mathfrak{g}) \\ \qquad = \dim \mathfrak{g} - \dim \ker \alpha \\ \geq \dim \mathfrak{g} - \dim \mathfrak{so}(n+1) \\ \qquad = \dim \mathfrak{g} - \frac{n(n+1)}{2}. \end{array}$$

Let $\pi : M \to B$ be regular Sasaki-Einstein onto Kähler-Einstein. Well known fact: *M* is S-E iff *B* is K-E with constant 2n + 2.

- Equality \implies equality above;
- **2** Regularity $\implies \pi(L) \subset B$ is Lagrangian with large isometry (actually homogeneous) K/H with $\mathfrak{k} = \mathfrak{so}(n+1)$;
- Solution K acts on B by with cohomogeneity one with two singular orbits: Kp (Lagrangian) and Kq;
- Homogeneous Lagrangians in K-E (Bedulli-Gori) \implies $\Omega = K^{\mathbb{C}}p$ is open Stein and that its complement has complex codim 1 and is another single $K^{\mathbb{C}}$ -orbit (*B* is two-orbit Kähler);
- Akhiezer classification of 2-orbit Kähler Ω ∪ A with Ω affine and A complex hypersurface

 $\implies \mathbb{RP}^n \subset \mathbb{CP}^n \text{ or } S^n \subset Q_n;$

• Explicit computation of multiplicity to exclude hyperquadrics:

- One possible way to have $S^n \subset Q_n$ (Chen-Nagano)
- Compute induced metric on S^n from K-E metric on Q_n $(\frac{n}{2n+2} \times \text{round metric});$
- The multiplicity of the eigenvalue 2n + 2 does not attain lower bound!
- $\pi(L) \subset B$ totally geodesic $\iff L \subset M$ totally geodesic.

Other family of eigenfunctions

View $M = \{r = 1\} \subset M \times \mathbb{R}^+$ and let $\mathfrak{k} =$ infinitesimal Kähler automorphisms of cone L minimal Legendrian For $K \in \mathfrak{k}$ construct function on L

$$h_K = \overline{g}(M_K \partial_r, J \partial_r)$$

where
$$M_K = \overline{\nabla}K + \frac{1}{2n+2}\operatorname{div}(JK)J$$
.
Then we prove

Theorem (Calamai, –)

M Sasaki-Einstein, L minimal Legendrian, then

$$\Delta_L h_K = (2n+2)h_K.$$

This family generalizes previous f_X as $\mathfrak{g} \subset \mathfrak{k}$.

Other family of eigenfunctions

- For S^{2n+1} the cone is $\mathbb{C}^{n+1} \setminus \{0\}$
- Take $M \in \mathfrak{su}(n+1)$
- Linear field $K : x \mapsto Mx$ is Killing and holomorphic
- Then $\overline{\nabla}_y K = My$ and $\operatorname{div}(JK) = 0$,

So $M_K(y) = My$ and

$$\overline{g}(M_{\mathcal{K}}\partial_r, J\partial_r)|_{(y,1)} = \langle My, Ky \rangle.$$

Legendrian implies that a local ON frame $\{e_i\}$ of L can be extended to an ON frame $\{\frac{1}{r}e_i, \frac{1}{r}Je_i, \frac{1}{r}\xi, \partial_r\}$ of C(M);

Minimality implies that intrinsic Laplacian = extrinsic Laplacian

$$\Delta_L f = -\sum_i
abla df(e_i, e_i)|_L - H \cdot f|_L$$

 \overline{g} Ricci-flat implies that M_K has similar properties of the M of Lê-Wang.

$$f:(p,r)\longmapsto \overline{g}(M_{\mathcal{K}}\partial_r,J\partial_r)$$
$$M_{\mathcal{K}}=\overline{\nabla}\mathcal{K}+\frac{1}{2n+2}\operatorname{div}(J\mathcal{K})J$$

Step 1 M_K is skew-symmetric, tr $JM_K = 0$ and $\overline{\nabla}M_K = \overline{\text{Rm}}(\cdot, K)$; Step 2 $\overline{\text{Rm}}(\cdot, \cdot, \cdot, \cdot)$ vanishes along certain directions; Step 3 Finally compute

$$\Delta_L f|_L = -\nabla df(e_i, e_i)|_L = -(e_i \cdot e_i \cdot f - \nabla_{e_i} e_i \cdot f)|_L$$
$$= (2n+2)f|_L$$

- Let *M* Sasakian with big enough automorphism group and *L* minimal with f_X or h_K as eigenfunctions of the Laplacian.
 Can we conclude that *L* is Legendrian?
- O totally geodesic L attain lower bound?
- 8 Remove regularity assumption in rigidity result;
- Give a geometric meaning to the family $\{h_{\mathcal{K}}: \mathcal{K} \in \mathfrak{k}\}$.

Thank you!