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Introduction, i

It was 50s. .., i

GEOMETRIE DIFFERENTIELLE. — Sur la cohomologie des variéiés
analytiques complexes. Note (*) de M. Pierre DoLseavLt, pré-
seniée par M. Jacques Hadamard.

Compte tenu de la trivialité locale de la «’-cohomologie sur une variété analy-
lique complexe V, on interpréte, du point de vue global, les espaces vectoriels de
cohomologie de V a coefficients dans le faisceau des germes de formes différentielles
holomorphes, fermées ou non.

[iv5Ab]



Introduction, ii

It was 50s. .., ii

Complex geometry encoded in global invariants:

9. Tnorime 1. — Pour tous entiers p, ¢ > o, lespace vectoriel H' (V, O7)
est canoniquement isomorphe au sous-espace HP (V) des éléments de type ¢
de la d"-cohomologie des courants (resp. des formes différentielles G*).

[iv5Ab]
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It was 50s. .., iii

What informations in 0-cohomology?

[iv5Ab]



Introduction, iv

It was 50s. .., iv

What informations in 0-cohomology?

4 Algebraic struct induced by differential algebra (A®*X, 0, A).

% Relation with topological informations.
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Introduction, v

It was 50s..., v

What informations in 0-cohomology?

4 Algebraic struct induced by differential algebra (A®*X, 0, A).

B J. Neisendorfer, L. Taylor, Dolbeault homotopy theory, Trans. Amer. Math. Soc. 245
(1978), 183-210.

% Relation with topological informations.
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Introduction, vi

It was 50s. .., vi

What informations in 0-cohomology?

4 Algebraic struct induced by differential algebra (A®*X, 0, A).

ﬁ J. Neisendorfer, L. Taylor, Dolbeault homotopy theory, Trans. Amer. Math. Soc. 245
(1978), 183-210.

% Relation with topological informations.
Sur une variété compacte V de type kahlérien,

THEoREME 3. — L’espace de cohomologie 5#(V) d'une variété compacte V
de type kihlérien est somme directe des espaces H*(V).

ﬁ A. Weil, Introduction a I'etude des variétés kihlériennes, Hermann, Paris, 1958.

[iv5Ab]



Introduction, vii

It was 50s. .., vii

On a complex (possibly non-Kéhler) manifold:

[iv5Ab]



Introduction, viii

It was 50s. .., viii

On a complex (possibly non-Kéhler) manifold:

TraeoreM 3. The Dolbeault groups H*(M, Q) form the term E, of a spectral se-
quence, whose term E , 18 the associated graded C-module of the conveniently filtered
de Rham groups. The spectral sequence is stationary after a finite number of steps,
and E _, = Ex for N sufficiently large.

a A. Frélicher, Relations between the cohomology groups of Dolbeault and topological invariants,
Proc. Nat. Acad. Sci. U.S.A. 41 (1955), 641-644.

[iv5Ab]



Introduction, ix

It was 50s. . ., ix

Interest on non-Kahler manifold since 70s:

[iv5Ab]



Introduction, x

It was 50s. .., x

Interest on non-Kahler manifold since 70s:

SOME SIMPLE EXAMPLES OF SYMPLECTIC
MANIFOLDS

‘W. P. THURSTON

ABSTRACT. This is a construction of closed symplectic manifolds with no
Kaehler structure.

@ K. Kodaira, On the structure of compact complex analytic surfaces. |, Amer. J. Math. 86 (1964),

751-798.
W. P. Thurston, Some simple examples of symplectic manifolds, Proc. Amer. Math. Soc. 55

(1976), no. 2, 467-468.

[iv5Ab]



Introduction, xi

It was 50s. .., xi

Bott-Chern and Aeppli cohomologies for complex manifolds:

In other words, if we define H*(X) by:

H4(X)=A4%*X) n Ker (d)/dd°A*-1*-1(X)

@ R. Bott, S. S. Chern, Hermitian vector bundles and the equidistribution of the zeroes of their
holomorphic sections, Acta Math. 114 (1965), 71-112.

ﬁ A. Aeppli, On the cohomology structure of Stein manifolds, in Proc. Conf. Complex Analysis
(Minneapolis, Minn., 1964), 58-70, Springer, Berlin, 1965.
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Introduction, xii

It was 50s. .., xii

Bott-Chern and Aeppli cohomologies for complex manifolds:

In other words, if we define H*(X) by:

H4(X)=A4%*X) n Ker (d)/dd°A*-1*-1(X)

@ R. Bott, S. S. Chern, Hermitian vector bundles and the equidistribution of the zeroes of their
holomorphic sections, Acta Math. 114 (1965), 71-112.

ﬁ A. Aeppli, On the cohomology structure of Stein manifolds, in Proc. Conf. Complex Analysis
(Minneapolis, Minn., 1964), 58-70, Springer, Berlin, 1965.

~>  they provide bridges between de Rham and Dolbeault cohomologies,
allowing their comparison

[iv5Ab]



Introduction, xiii

summary, i

Aim:
study the algebra of Bott-Chern cohomology, and its relation with
de Rham cohomology:

[iv5Ab]
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summary, ii

Aim:
study the algebra of Bott-Chern cohomology, and its relation with
de Rham cohomology:

m use Bott-Chern as degree of “non-Kahlerness”. ..
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Introduction, xv

summary, iii

Aim:
study the algebra of Bott-Chern cohomology, and its relation with
de Rham cohomology:

m use Bott-Chern as degree of “non-Kahlerness”. ..

m ...in order to characterize 99-Lemma:;
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Introduction, xvi

summary, iv

Aim:
study the algebra of Bott-Chern cohomology, and its relation with
de Rham cohomology:

m use Bott-Chern as degree of “non-Kahlerness”. ..

m ...in order to characterize 99-Lemma:;

m develop techniques for computations on special classes of manifolds.

[iv5Ab]



Cohomologies of complex manifolds, i

double complex of forms, i

Consider the double
complex

(A**X, 0, 9)

associated to
a cplx mfd X

[iv5Ab]



Cohomologies of complex manifolds, ii

double complex of forms, ii

Consider the double
complex

(A**X, 0, 9) ‘

associated to -1
a cplx mfd X

p-2 p-1 » pt+1 p+2

[iv5Ab]



Cohomologies of complex manifolds, iii

Dolbeault cohomology, i

q+2
q+1
ker O 0
[X) o
Hg (X) = —
imo
g—1
-2
p—2 p—1 P p+1 p+2

[iv5Ab]

ﬁ P. Dolbeault, Sur la cohomologie des variétés analytiques complexes, C. R. Acad. Sci. Paris 236

(1953), 175-177.



Cohomologies of complex manifolds, iv

Dolbeault cohomology, ii

.o ker 0 a
Ho™(X) = im0

p—2 p—1 P p+1 p+2

[iv5Ab]



Cohomologies of complex manifolds, v

Dolbeault cohomology, iii

In the Frélicher spectral sequence

H®(X) == H3p(X; )

the Dolbeault cohom plays the role of approximation of de Rham.

[iv5Ab]
ﬁ A. Frélicher, Relations between the cohomology groups of Dolbeault and topological invariants,
Proc. Nat. Acad. Sci. U.S.A. 41 (1955), 641-644.



Cohomologies of complex manifolds, vi

Dolbeault cohomology, iv

In the Frélicher spectral sequence

H®(X) == H3p(X; )

the Dolbeault cohom plays the role of approximation of de Rham.

As a consequence, the Frélicher inequality holds:

> dime H29(X) > dime Hig(X;C) .
p+q=k

[iv5Ab]
ﬁ A. Frélicher, Relations between the cohomology groups of Dolbeault and topological invariants,
Proc. Nat. Acad. Sci. U.S.A. 41 (1955), 641-644.
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Bott-Chern and Aeppli cohomologies, i

In general, there is no natural map between Dolb and de Rham:
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Cohomologies of complex manifolds, viii

Bott-Chern and Aeppli cohomologies, ii

In general, there is no natural map between Dolb and de Rham:

we would like to have a “bridge” between them.

I
H5* (X) Har(X: C) HZ*(X)

~
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Cohomologies of complex manifolds, ix

Bott-Chern and Aeppli cohomologies, iii

In general, there is no natural map between Dolb and de Rham:

we would like to have a “bridge” between them.

I
H5* (X) Har(X: C) HZ*(X)

~

The bridges are provided by Bott-Chern and Aeppli cohomologies.

[iv5Ab]



Cohomologies of complex manifolds, x

Bott-Chern and Aeppli cohomologies, iv

.o kerdNkerd ¢
Hge(X) = YA

p-2 p-1 » pt1 p+2

[iv5Ab]
ﬁ R. Bott, S. S. Chern, Hermitian vector bundles and the equidistribution of the zeroes of their
holomorphic sections, Acta Math. 114 (1965), no. 1, 71-112.



Cohomologies of complex manifolds, xi

Bott-Chern and Aeppli cohomologies, v

*(X) ker 90 a
" imd+imd

p-2 p-1 » pt1 p+2

[iv5Ab]
ﬁ A. Aeppli, On the cohomology structure of Stein manifolds, Proc. Conf. Complex Analysis
(Minneapolis, Minn., 1964), Springer, Berlin, 1965, pp. 58-70.



Cohomological properties of non-Kahler manifolds, i

cohomologies of complex manifolds, i

On cplx mfds, identity induces natural maps

Hge (X)

N

Hy*(X) H3r(X: C) HZ*(X)

~. 1

Hy*(X)

[iv5Ab]



Cohomological properties of non-Kahler manifolds, ii

cohomologies of complex manifolds, i

By def, a cpt cplx mfd satisfies 90-Lemma
if every O-closed O-closed d-exact form is
00-exact too

[iv5Ab]



Cohomological properties of non-Kahler manifolds, iii

cohomologies of complex manifolds, iii

By def, a cpt cplx mfd satisfies 00-Lemma
ifﬁevery O-closed O-closed d-exact form is "
00-exact too, equivalently, if all the above ! \ l /

maps are isomorphisms. pre
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Cohomological properties of non-Kahler manifolds, iv

cohomologies of complex manifolds, iv

By def, a cpt cplx mfd satisfies 00-Lemma
ifﬁevery O-closed O-closed d-exact form is "
00-exact too, equivalently, if all the above ! \ l /

maps are isomorphisms. pre

m While compact Kihler mfds satisfy the d0-Lemma, . ..
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Cohomological properties of non-Kahler manifolds, v

cohomologies of complex manifolds, v

By def, a cpt cplx mfd satisfies 00-Lemma
ifﬁevery O-closed O-closed d-exact form is "
00-exact too, equivalently, if all the above ! \ l /

maps are isomorphisms. pre

m While compact Kihler mfds satisfy the d0-Lemma, . ..

m ...Bott-Chern cohomology may supply further informations
on the geometry of non-Kihler manifolds.

[iv5Ab]



Cohomological properties of non-Kahler manifolds, vi

inequality a /a Frélicher for Bott-Chern cohomology, i
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ﬁ —, A. Tomassini, On the 99-Lemma and Bott-Chern cohomology, Invent. Math. 192 (2013),

no. 1, 71-81.



Cohomological properties of non-Kahler manifolds,

inequality a /a Frélicher for Bott-Chern cohomology, ii

Dolbeault cohomology cares only about horizon- o o
tal arrows, as Bott-Chern cares only about ingo- 3| © A °
ing arrows, and, dually, Aeppli cares only about
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@ —, A. Tomassini, On the 99-Lemma and Bott-Chern cohomology, Invent. Math. 192 (2013),

no. 1, 71-81.



Cohomological properties of non-Kahler manifolds, viii

inequality a /a Frélicher for Bott-Chern cohomology, iii

Dolbeault cohomology cares only about horizon- o o
tal arrows, as Bott-Chern cares only about ingo- 3| © b °
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@ —, A. Tomassini, On the 99-Lemma and Bott-Chern cohomology, Invent. Math. 192 (2013),

no. 1, 71-81.



Cohomological properties of non-Kahler manifolds, ix

inequality a /a Frélicher for Bott-Chern cohomology, iv

Dolbeault cohomology cares only about horizon- o
tal arrows, as Bott-Chern cares only about ingo- 3| © . °
ing arrows, and, dually, Aeppli cares only about o
. ~s0ee
outgoing arrows. 2000 foee | cee
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[iv5Ab]
@ —, A. Tomassini, On the 99-Lemma and Bott-Chern cohomology, Invent. Math. 192 (2013),

no. 1, 71-81.



Cohomological properties of non-Kahler manifolds, x

inequality a /a Frélicher for Bott-Chern cohomology, v

Dolbeault cohomology cares only about horizon- o o
tal arrows, as Bott-Chern cares only about ingo- 3| © A °
ing arrows, and, dually, Aeppli cares only about PP P
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ﬁ —., A. Tomassini, On the 89-Lemma and Bott-Chern cohomology, Invent. Math. 192 (2013),

no. 1, 71-81.



Cohomological properties of non-Kahler manifolds, xi

inequality a /a Frélicher for Bott-Chern cohomology, vi

Dolbeault cohomology cares only about horizon- o o
tal arrows, as Bott-Chern cares only about ingo-  *| ® A °
ing arrows, and, dually, Aeppli cares only about PP P
outgoing arrows. 2/ 000 | 000 >000 T..
. o0 0 +-0 00
Since . st
ﬁ {IngOIng} + ﬁ {OUthIng} 1l oo @ o000 00 LN
o000 00
> g{horizontal} + f{vertical} PR
0 L] ] L] °
L] L]
one gets: o i 2 3

Thm (—, A. Tomassini)
X cpt cplx mfd. The following inequality a la Frolicher holds:

> (dime HEE(X) + dime HR (X)) > 2 dime Hfi(X; C) .
pt+q=k

|iNaAM
@ —, A. Tomassini, On the 99-Lemma and Bott-Chern cohomology, Invent. Math. 192 (2013),
no. 1, 71-81.



Cohomological properties of non-Kahler manifolds, xii

inequality a /a Frélicher for Bott-Chern cohomology, vii

Dolbeault cohomology cares only about horizon- o o
tal arrows, as Bott-Chern cares only about ingo-  *| ® A °
ing arrows, and, dually, Aeppli cares only about PP P
Outgoing arrows. 2/ 000 | 000 >000 T..
. o0 0 +-0 00
Since . st
ﬁ {IngOIng} + ﬁ {OUthIng} 1l oo @ o000 00 LN
o000 00
> g{horizontal} + f{vertical} PR
0 L] ] L] °
L] L]
one gets: o i 2 3

Thm (—, A. Tomassini)
X cpt cplx mfd. The following inequality a la Frolicher holds:

> (dimg HEE(X) + dimc H39(X)) > 2 dimc Hjg(X: C) .
pt+q=k

Furthermore, the equality characterizes the 00-Lemma.

|iNaAM

@ —., A. Tomassini, On the 89-Lemma and Bott-Chern cohomology, Invent. Math. 192 (2013),
no. 1, 71-81.



Cohomological properties of non-Kahler manifolds, xiii

inequality a /a Frélicher for Bott-Chern cohomology, viii

For cpt cplx mfd:

AKX =0forany k < 99-Lemma (= cohomologically-Kahler)

(where: Ak = hgc + hi“ —2b, €N).

[iv5Ab]
ﬁ —, G. Dloussky, A. Tomassini, On Bott-Chern cohomology of compact complex surfaces,
arXiv:1402.2408 [math.DG].



Cohomological properties of non-Kahler manifolds, xiv

inequality a /a Frélicher for Bott-Chern cohomology, ix

For cpt cplx mfd:
AKX =0forany k < 99-Lemma (= cohomologically-Kahler)
(where: Ak := Rk 4+ bk —2b, € N).
For cpt cplx surfaces:

Kahler < by even <<  cohom-Kihler

[iv5Ab]
ﬁ —. G. Dloussky, A. Tomassini, On Bott-Chern cohomology of compact complex surfaces,
arXiv:1402.2408 [math.DG].



Cohomological properties of non-Kahler manifolds, xv

inequality a /a Frélicher for Bott-Chern cohomology, x

For cpt cplx mfd:

AKX =0forany k < 99-Lemma (= cohomologically-Kahler)
(where: Ak := b+ bk —2b, € N).
For cpt cplx surfaces:
Kahler < by even <<  cohom-Kihler
hence A and A% measure just Kihlerness.
[iv5Ab]

ﬁ —. G. Dloussky, A. Tomassini, On Bott-Chern cohomology of compact complex surfaces,
arXiv:1402.2408 [math.DG].



Cohomological properties of non-Kahler manifolds, xvi

inequality a /a Frélicher for Bott-Chern cohomology, xi

For cpt cplx mfd:

AKX =0forany k < 99-Lemma (= cohomologically-Kahler)

(where: Ak = hgc + hﬁ —2b, €N).

For cpt cplx surfaces:
Kahler < by even <<  cohom-Kihler

hence A and A% measure just Kihlerness.

In fact, non-Kahlerness is measured by just %Az eN.

[iv5Ab]
ﬁ —. G. Dloussky, A. Tomassini, On Bott-Chern cohomology of compact complex surfaces,
arXiv:1402.2408 [math.DG].



Cohomological properties of non-Kahler manifolds, xvii

09-Lemma and deformations — part I, i

By Hodge theory, dim¢ HEZ and dimc HY? are upper-semi-continuous for
deformations of the complex structure.

[iv5Ab]



Cohomological properties of non-Kahler manifolds, xviii

09-Lemma and deformations — part |, ii

By Hodge theory, dim¢ HEZ and dimc HY? are upper-semi-continuous for
deformations of the complex structure. Hence the equality

> (dime HEE(X) + dime HE9(X)) = 2 dimc Hgr(X; C)

p+q=k

is stable for small deformations.

[iv5Ab]



Cohomological properties of non-Kahler manifolds, xix

00-Lemma and deformations — part |, iii

By Hodge theory, dim¢ HEZ and dimc HY? are upper-semi-continuous for
deformations of the complex structure. Hence the equality

> (dime HEE(X) + dime HE9(X)) = 2 dimc Hgr(X; C)

p+q=k

is stable for small deformations. Then:

Cor (Voisin; Wu; Tomasiello; —, A. Tomassini)

The property of satisfying the 00-Lemma is open under
deformations.

[iv5Ab]



Cohomological properties of non-Kahler manifolds, xx

00-Lemma and deformations — part |, iv

Problem:
what happens for limits?

If J; satisfies 00-Lem for any t # 0, does Jy satisfy 00-Lem, too?

We need tools for investigating explicit examples. . .

[iv5Ab]



Cohomological properties of non-Kahler manifolds, xxi

techniques of computations — nilmanifolds, i

X compact cplx mfd. We want to compute HgZ(X).

[iv5Ab]

a M. Schweitzer, Autour de la cohomologie de Bott-Chern, arXiv:0709.3528 “[math.4G].



Cohomological properties of non-Kahler manifolds, xxii

techniques of computations — nilmanifolds, i

X compact cplx mfd. We want to compute HgZ(X).

Hodge theory reduces the probl to a pde system

[iv5Ab]

a M. Schweitzer, Autour de la cohomologie de Bott-Chern, arXiv:0709.3528 “[math.4G].



Cohomological properties of non-Kahler manifolds, xxiii

techniques of computations — nilmanifolds, iii

X compact cplx mfd. We want to compute HgZ(X).

Hodge theory reduces the probl to a pde system: fixed g Hermitian
metric, there is a 4th order elliptic differential operator Apgc s.t.

HEZ(X) ~ ker Age = {UE/\”"’X : Ou=0u=(00) u} .

[iv5Ab]

a M. Schweitzer, Autour de la cohomologie de Bott-Chern, arXiv:0709.3528 “[math.4G].



Cohomological properties of non-Kahler manifolds, xxiv

techniques of computations — nilmanifolds, iv

X compact cplx mfd. We want to compute HgZ(X).
Hodge theory reduces the probl to a pde system: fixed g Hermitian

metric, there is a 4th order elliptic differential operator Apgc s.t.

HEZ(X) ~ ker Age = {UE APAX 1 Qu = 9du= (00) z./} .

For some classes of homogeneous mfds, the solutions of this system
may have further symmetries, which reduce to the study of Agc on
a smaller space.

[iv5Ab]

ﬁ M. Schweitzer, Autour de la cohomologie de Bott-Chern, arXiv:0709.3528 “[math.4G].



Cohomological properties of non-Kahler manifolds, xxv

techniques of computations — nilmanifolds, v

X compact cplx mfd. We want to compute HgZ(X).

Hodge theory reduces the probl to a pde system: fixed g Hermitian
metric, there is a 4th order elliptic differential operator Apgc s.t.

HEZ(X) ~ ker Age = {UE APAX 1 Qu = 9du= (00) z./} .

For some classes of homogeneous mfds, the solutions of this system
may have further symmetries, which reduce to the study of Agc on
a smaller space. If this space is finite-dim, we are reduced to solve a
linear system.

[iv5Ab]

ﬁ M. Schweitzer, Autour de la cohomologie de Bott-Chern, arXiv:0709.3528 “[math.4G].



Cohomological properties of non-Kahler manifolds, xxvi

techniques of computations — nilmanifolds, vi

In other words, we would like to reduce the study to a H;-model,
that is, a sub-algebra

L (/\/l"', 0, 5) — (/\"'X, 0, 5)

such that H;(¢) isomorphism, where ¢ € {dR, 0, 0, BC, A}.

[iv5Ab]



Cohomological properties of non-Kahler manifolds, xxvii

techniques of computations — nilmanifolds, vii

In other words, we would like to reduce the study to a H;-model,
that is, a sub-algebra

L (/\/l"', 0, 5) — (/\"'X, 0, 5)
such that H;(¢) isomorphism, where ¢ € {dR, 0, 0, BC, A}.

We are interested in Hy-computable cplx mfds, that is, admitting a
Hi-model being finite-dimensional as a vector space.

[iv5Ab]



Cohomological properties of non-Kahler manifolds, xxviii

techniques of computations — nilmanifolds, viii

Thm (Nomizu)

X = T'\G nilmanifold (compact quotients of
connected simply-connected nilpotent Lie groups G by
co-compact discrete subgroups T").

[iv5Ab]



Cohomological properties of non-Kahler manifolds, xxix

techniques of computations — nilmanifolds, ix

Thm (Nomizu)

X = T'\G nilmanifold (compact quotients of
connected simply-connected nilpotent Lie groups G by
co-compact discrete subgroups T").

Then it is Hyr-computable.

More precisely, the finite-dimensional sub-space
of forms being invariant for the left-action
G ~ X is a Hyr-model.

[iv5Ab]



Cohomological properties of non-Kahler manifolds, xxx

techniques of computations — nilmanifolds, x

Tl —> X = NG

Thm (Nomizu) TiC M

X = T'\G nilmanifold (compact quotients of
connected simply-connected nilpotent Lie groups G by
co-compact discrete subgroups T").

Then it is Hyr-computable.

More precisely, the finite-dimensional sub-space
of forms being invariant for the left-action ik C = X,
G ~ X is a Hyr-model.

']I‘-ik+1

[iv5Ab]



Cohomological properties of non-Kahler manifolds, xxxi
techniques of computations — nilmanifolds, xi

Console and Fin

X = T'\G nilmanifold

@ K. Nomizu, On the cohomology of compact homogeneous spaces of nilpotent Lie groups, Ann. of
Math. (2) 59 (1954), no. 3, 531-538.

@ S. Console, A. Fino, Dolbeault cohomology of compact nilmanifolds, Transform. Groups 6 (2001),

no. 2, 111-124. [i]\ISAM]

ﬁ —, The cohomologies of the lwasawa manifold and of its small deformations, J. Geom. Anal. 23
(2013), no. 3, 1355-1378.



Cohomological properties of non-Kahler manifolds, xxxii
techniques of computations — nilmanifolds, xii

X = I'\G nilmanifold, endowed with a “suitable” left-invariant cplx
Structure.

@ K. Nomizu, On the cohomology of compact homogeneous spaces of nilpotent Lie groups, Ann. of
Math. (2) 59 (1954), no. 3, 531-538.

@ S. Console, A. Fino, Dolbeault cohomology of compact nilmanifolds, Transform. Groups 6 (2001),

no. 2, 111-124. [i]\ISAM]

ﬁ —, The cohomologies of the lwasawa manifold and of its small deformations, J. Geom. Anal. 23
(2013), no. 3, 1355-1378.



Cohomological properties of non-Kahler manifolds, xxxiii

techniques of computations — nilmanifolds, xiii

Console and Fino; —; et al.)

X = I'\G nilmanifold, endowed with a “suitable” left-invariant cplx

Structure.

Then:
m de Rham cohom ( )
m Dolbeault cohom ¢ )
m Bott-Chern cohom (—)

can be computed by considering only left-invariant forms.

@ K. Nomizu, On the cohomology of compact homogeneous spaces of nilpotent Lie groups, Ann. of
Math. (2) 59 (1954), no. 3, 531-538.

ﬁ S. Console, A. Fino, Dolbeault cohomology of compact nilmanifolds, Transform. Groups 6 (2001),
no. 2, 111-124. liNSAM]

@ —, The cohomologies of the lwasawa manifold and of its small deformations, J. Geom. Anal. 23

(2013), no. 3, 1355-1378.
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Iwasawa manifold, i
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Iwasawa manifold, ii

Iwasawa manifold:
1 .3

1 22 z
I3 = (Z[i])3\{(0 1 22) € GL (<c3)}
0 0 1

m holomorphically-parallelizable nilmanifold

[iv5Ab]
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Iwasawa manifold, iii

Iwasawa manifold:
1 .3

1 22 z
I3 = (Z[i])3\{(0 1 22) € GL (<c3)}
0 0 1

m holomorphically-parallelizable nilmanifold

m left-inv co-frame for (T1’0H3)*:

{gol =dzl, ¢?=d7?, (pa::dz3—zld22}

[iv5Ab]
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Iwasawa manifold, iv

Iwasawa manifold:

o 2
I3 = (Z[i])3\ 0 1 22 | € GL(C?
0 0 1

m holomorphically-parallelizable nilmanifold
*

m left-inv co-frame for (T1’0H3) :
{gol =dzl, ¢?=dz? P ::dz3—zld22}
m structure equations:
de! = 0
de? = 0
dp® = —pl A2 [iv5Ab]
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Iwasawa manifold, v

[ J [ J
3 ° ° ° °
o——>0
o000 00
2’ oo 0 | oo e +000 | 00 @ Left-invariant  forms
T ? ? ?*—*? ? ? T provide a finite-dim
J LTI 1111 J cohomological-model
0o 000
|l eoe® | eoe 000 | 000 for the lwasawa
o000 00 manifold.
o——@
0 ° ° ° °
°® °
0 1 2 3

[iv5Ab]
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Iwasawa manifold, vi

Thm (Nakamura)

There exists a locally complete complex-analytic family of complex
structures, deformations of I3, depending on six parameters. They can be
divided into three classes according to their Hodge numbers

[iv5Ab]
ﬁ I. Nakamura, Complex parallelisable manifolds and their small deformations, J. Differ. Geom. 10
(1975), no. 1, 85-112.
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Iwasawa manifold, vii

Thm (Nakamura)

There exists a locally complete complex-analytic family of complex
structures, deformations of I3, depending on six parameters. They can be
divided into three classes according to their Hodge numbers

Bott-Chern yields a finer classification of Kuranishi space of I3 (—)-
class || hl hic |k hlc | h2 hic [ RS hiC [ S h3 ||
@i | 5 4 |11 10 |14 14 |11 12 | 5 6 |
(ia) || 4 4 |9 8 |12 14 |9 11| 4 6
(i) || 4 4 |9 8 |12 14 |9 10| 4 6
(ia) || 4 4 |8 6 [10 14 |8 11 | 4 6
Giib) || 4 4 |8 6 |10 14 |8 10| 4 6
| bi=4 | b,=8 | by=10 | bs=8 | bs=4 |

[iv5Ab]
ﬁ I. Nakamura, Complex parallelisable manifolds and their small deformations, J. Differ. Geom. 10
(1975), no. 1, 85-112.
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Iwasawa manifold, viii

More in general:

any left-invariant complex structure on a 6-dim nilmfd admits a
finite-dim cohomological-model (except, perhaps, h7)

~» cohomol classification of 6-dim nilmfds with left-inv cplx struct.

ﬁ —, M. G. Franzini, F. A. Rossi, Degree of non-Kahlerianity for 6-dimensional nilmanifolds,
arXiv:1210.0406 [math.DG]. [iNSAM]
A. Latorre, L. Ugarte, R. Villacampa, On the Bott-Chern cohomology and balanced Hermitian
nilmanifolds, arXiv:1210.0395 [math.DG].
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techniques of computations — solvmanifolds, i

Problem:
what about closedness of 90-

Lemma under limits?

But:

m non-tori nilmanifolds never satisfy 0-Lemma (Hasegawa);

ﬁ K. Hasegawa, Minimal models of nilmanifolds, Proc. Amer. Math. Soc. 106 (1989), no. 1, 65-71. [iNEAM]
ﬁ A. Andreotti, W. Stoll, Extension of holomorphic maps, Ann. of Math. (2) 72 (1960), no. 2,
312-349.
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techniques of computations — solvmanifolds, ii

Problem:
what about closedness of 90-

Lemma under limits?

But:
m non-tori nilmanifolds never satisfy 90-Lemma (Hasegawa);
m tori are closed (Andreotti and Grauert and Stoll).

ﬁ K. Hasegawa, Minimal models of nilmanifolds, Proc. Amer. Math. Soc. 106 (1989), no. 1, 65-71. [iNEAM]
ﬁ A. Andreotti, W. Stoll, Extension of holomorphic maps, Ann. of Math. (2) 72 (1960), no. 2,
312-349.
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techniques of computations — solvmanifolds, iii

Problem:
what about closedness of 90-

Lemma under limits?

But:
m non-tori nilmanifolds never satisfy 90-Lemma (Hasegawa);
m tori are closed (Andreotti and Grauert and Stoll).
Therefore:

m consider solvmanifolds (compact quotients of connected simply-connected

solvable Lie groups by co-compact discrete subgroups).

ﬁ K. Hasegawa, Minimal models of nilmanifolds, Proc. Amer. Math. Soc. 106 (1989), no. 1, 65-71. [iNSAM]
B A. Andreotti, W. Stoll, Extension of holomorphic maps, Ann. of Math. (2) 72 (1960), no. 2,
312-349.
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techniques of computations — solvmanifolds, iv

Several tools have been developed for computing cohomologies of
solvmanifolds with left-inv cplx structure

B A. Hattori, Spectral sequence in the de Rham cohomology of fibre bundles, J. Fac. Sci. Univ.
Tokyo Sect. | 8 (1960), no. 1960, 289-331.

P. de Bartolomeis, A. Tomassini, On solvable generalized Calabi-Yau manifolds, Ann. Inst. Fourier
(Grenoble) 56 (2006), no. 5, 1281-1296.

H. Kasuya, Minimal models, formality and hard Lefschetz properties of solvmanifolds with local

systems, J. Differ. Geom. 93, (2013), 269-298. [iNEAM]

) @) &

H. Kasuya, Techniques of computations of Dolbeault cohomology of solvmanifolds, Math. Z. 273
(2013), no. 1-2, 437-447.
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techniques of computations — solvmanifolds, v

Several tools have been developed for computing cohomologies of
solvmanifolds with left-inv cplx structure, and of their deformations
(H. Kasuya; —, H. Kasuya).

B A. Hattori, Spectral sequence in the de Rham cohomology of fibre bundles, J. Fac. Sci. Univ.
Tokyo Sect. | 8 (1960), no. 1960, 289-331.

P. de Bartolomeis, A. Tomassini, On solvable generalized Calabi-Yau manifolds, Ann. Inst. Fourier
(Grenoble) 56 (2006), no. 5, 1281-1296.

H. Kasuya, Minimal models, formality and hard Lefschetz properties of solvmanifolds with local

systems, J. Differ. Geom. 93, (2013), 269-298. [iNEAM]

) @) &

H. Kasuya, Techniques of computations of Dolbeault cohomology of solvmanifolds, Math. Z. 273
(2013), no. 1-2, 437-447.
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00-Lemma and deformations — part I, i

Thanks to these tools:
Thm (—, H. Kasuya)

The property of satisfying the O0-Lemma is non-closed under
deformations.

[iv5Ab]
@ —, H. Kasuya, Cohomologies of deformations of solvmanifolds and closedness of some properties,
arXiv:1305.6709 [math.CV].
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00-Lemma and deformations — part Il i

The Lie group
CxyC? dove ¢(z) = e 0
¢ 0 e )~

admits a lattice: the quotient is called Nakamura manifold.

[iv5Ab]



Cohomological properties of non-Kahler manifolds, xlix

00-Lemma and deformations — part Il iii

The Lie group
2 e 0
CxyC dove ¢(z) = ( 0 Z) .

admits a lattice: the quotient is called Nakamura manifold.

Consider the small deformations in the direction

0
tﬁ@)dz

[iv5Ab]



Cohomological properties of non-Kahler manifolds, |

00-Lemma and deformations — part I, iv

The Lie group

CxgC? dove ¢(z) = ( Oz OZ> .

admits a lattice: the quotient is called Nakamura manifold.

Consider the small deformations in the direction

0
tﬁ@)dz

~> the previous theorems furnish finite-dim sub-complexes to
compute Dolbeault and Bott-Chern cohomologies.

[in5Ab]
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09-Lemma and deformations — part Il, v

dim¢ Hu"" Nakamura | deformations
dR|d BC|drR|d BC
(00 1|1 1]1]1 1
(1,0) 3 1,1
(0,1) 301 11
(2,0) 3 3 101
@y | 3|9 7|5 |3 3
(0,2) 3 3 11
(3,0) 11 11
(2,1) 8|9 9|8 |3 3
(1,2) 9 9 3 3
(0,3) 11 11
(3,1) 3 3 11
22 |59 115|353 3
(1,3) 3 3 11
(3,2) , |3 5,1 1
(2,3) 305 11 [iN&AM]
(3.3 1]t 1]1]1 1




Generalized-complex geometry, i

generalized-complex structures, i

m Cplx structure:
J: TX = TX satisfying an algebraic condition (J2 = —id7x)
and an analytic condition (integrability in order to have
holomorphic coordinates).

[iv5Ab]



Generalized-complex geometry, i

generalized-complex structures, i

m Cplx structure:
J: TX = TX satisfying an algebraic condition (J2 = —id7x)
and an analytic condition (integrability in order to have
holomorphic coordinates).

m Sympl structure:
w: TX = T*X satisfying an algebraic condition (w non-deg
2-form) and an analytic condition (dw = 0).

[iv5Ab]



Generalized-complex geometry, iii

generalized-complex structures, iii

Hence, consider the bundle TX @ T*X.

ﬁ N. J. Hitchin, Generalized Calabi-Yau manifolds, Q. J. Math. 54 (2003), no. 3, 281-308.

B M. Gualtieri, Generalized complex geometry, Oxford University DPhil thesis, arXiv:math/0401221
[math. DG, [iv5Ab]
G. R. Cavalcanti, New aspects of the dd-lemma, Oxford University D. Phil thesis,
arXiv:math/0501406 [math.DG].
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generalized-complex structures, iv

Hence, consider the bundle TX @& T*X. Note that it admits a natural
bilinear pairing: (X +¢&|Y + 1) = % (exn + Ly ).

@ N. J. Hitchin, Generalized Calabi-Yau manifolds, Q. J. Math. 54 (2003), no. 3, 281-308.

ﬁ M. Gualtieri, Generalized complex geometry, Oxford University DPhil thesis, arXiv:math/0401221
[math. DG, [iv5Ab]
G. R. Cavalcanti, New aspects of the dd-lemma, Oxford University D. Phil thesis,
arXiv:math/0501406 [math.DG].



Generalized-complex geometry, v

generalized-complex structures, v

Hence, consider the bundle TX @& T*X. Note that it admits a natural
bilinear pairing: (X +¢&|Y + 1) = % (exn + Ly ).

Mimicking the def of cplx and sympl structures:

@ N. J. Hitchin, Generalized Calabi-Yau manifolds, Q. J. Math. 54 (2003), no. 3, 281-308.

ﬁ M. Gualtieri, Generalized complex geometry, Oxford University DPhil thesis, arXiv:math/0401221
[math. DG, [iv5Ab]
G. R. Cavalcanti, New aspects of the dd-lemma, Oxford University D. Phil thesis,
arXiv:math/0501406 [math.DG].



Generalized-complex geometry, vi

generalized-complex structures, vi

Hence, consider the bundle TX @& T*X. Note that it admits a natural
bilinear pairing: (X +¢&|Y + 1) = % (exn + Ly ).

Mimicking the def of cplx and sympl structures:

a generalized-complex structure on a 2n-dim mfd X is a
T TXeTX—>TX®TX

such that 72 = —idrxe71+x, being orthogonal wrt (—|=), and
satisfying an integrability condition.

@ N. J. Hitchin, Generalized Calabi-Yau manifolds, Q. J. Math. 54 (2003), no. 3, 281-308.

B M. Gualtieri, Generalized complex geometry, Oxford University DPhil thesis, arXiv:math/0401221
[math. DG, [iv5Ab]
G. R. Cavalcanti, New aspects of the dd-lemma, Oxford University D. Phil thesis,
arXiv:math/0501406 [math.DG].
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generalized-complex structures, vii

Generalized-cplx geom unifies cplx geom and sympl geom:

[iv5Ab]
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generalized-complex structures, viii

Generalized-cplx geom unifies cplx geom and sympl geom:

—J| 0
7= (57r)

is generalized-complex;

m J cplx struct: then

[iv5Ab]



Generalized-complex geometry, ix

generalized-complex structures, ix

Generalized-cplx geom unifies cplx geom and sympl geom:

—J| 0
7= (57r)

is generalized-complex;

m J cplx struct: then

m w sympl struct: then

is generalized-complex.
[iv5Ab]



Generalized-complex geometry, x

cohomological properties of symplectic manifolds, i

This explains the parallel between the cplx and sympl contexts:

L.-S. Tseng, S.-T. Yau, Cohomology and Hodge Theory on Symplectic Manifolds: I. I, J. Differ.

G . 91 (2012), . 3, 383—-416, 417-443. 3
eom. 91 (2012), no [.N&AM]

) =)

L.-S. Tseng, S.-T. Yau, Generalized Cohomologies and Supersymmetry, Comm. Math. Phys. 326
(2014), no. 3, 875-885.



Generalized-complex geometry, xi

cohomological properties of symplectic manifolds, ii

This explains the parallel between the cplx and sympl contexts: e.g.,

for a symplectic manifold, consider the operators
d: A°X = ATIX and  dM = [d, -] AT X = ATTIX

as the counterpart of 9 and 0 in complex geometry.

a L.-S. Tseng, S.-T. Yau, Cohomology and Hodge Theory on Symplectic Manifolds: I. I, J. Differ.

G . 91 (2012), . 3, 383—-416, 417-443. 3
eom. 91 (2012), no [.N&AM]

L.-S. Tseng, S.-T. Yau, Generalized Cohomologies and Supersymmetry, Comm. Math. Phys. 326
(2014), no. 3, 875-885.



Generalized-complex geometry, xii

cohomological properties of symplectic manifolds, iii

This explains the parallel between the cplx and sympl contexts: e.g.,

for a symplectic manifold, consider the operators
d: A°X = ATIX and  dM = [d, -] AT X = ATTIX

as the counterpart of 9 and 0 in complex geometry.
Define the cohomologies

. ker d Mker d" . ker d d"
HBC,w(X) = . A and HA,w(X) = . A
imdd imd+imd
ﬁ L.-S. Tseng, S.-T. Yau, Cohomology and Hodge Theory on Symplectic Manifolds: I. I, J. Differ.

.91 (2012), no. 3, 383-416, 417—443. .
Geom. 91 (2012), no. 3, 383-416 3 [lNSAM]

L.-S. Tseng, S.-T. Yau, Generalized Cohomologies and Supersymmetry, Comm. Math. Phys. 326
(2014), no. 3, 875-885.



Generalized-complex geometry, xiv
cohomological properties of symplectic manifolds, v

Thm (Merkulov; Guillemin; Cavalcanti

Let X be a 2n-dim cpt symplectic mfd.

@ S. A. Merkulov, Formality of canonical symplectic complexes and Frobenius manifolds, Int. Math.
Res. Not. 1998 (1998), no. 14, 727-733.

V. Guillemin, Symplectic Hodge theory and the d 6-Lemma, preprint, Massachusetts Insitute of
Technology, 2001.

D. Angella, A. Tomassini, Inequalities a /a Frélicher and cohomological decompositions, to appear
in J. Noncommut. Geom..

=) ) @

K. Chan, Y.-H. Suen, A Frdlicher-type inequality for generalized complex manifolds,
arXiv:1403.1682 [math.DG].

[iv5Ab]



Generalized-complex geometry, xv
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Thm (Merkulov; Guillemin; Cavalcanti

Let X be a 2n-dim cpt symplectic mfd. Then, for any k,

dimg Hic.(X) + dimg Hi ., > 2 dimg Hiz(X;R) .

@ S. A. Merkulov, Formality of canonical symplectic complexes and Frobenius manifolds, Int. Math.
Res. Not. 1998 (1998), no. 14, 727-733.

V. Guillemin, Symplectic Hodge theory and the d 6-Lemma, preprint, Massachusetts Insitute of
Technology, 2001.

D. Angella, A. Tomassini, Inequalities a /a Frélicher and cohomological decompositions, to appear

in J. Noncommut. Geom.. [iNSAM]

=) ) @

K. Chan, Y.-H. Suen, A Frdlicher-type inequality for generalized complex manifolds,
arXiv:1403.1682 [math.DG].



Generalized-complex geometry, xvi
cohomological properties of symplectic manifolds, vii

Let X be a 2n-dim cpt symplectic mfd. Then, for any k,
dimg Hic.(X) + dimg Hi ., > 2 dimg Hiz(X;R) .

Furthermore, the following are equivalent:
m X satisfies d d"-Lemma (i.e., Bott-Chern and de Rham cohom are natur isom);
m X satisfies Hard Lefschetz Cond (i.e., [wX]: Hg,;k(X) — HOEK(X) isom Vk);
m equality dim Hgc ., (X) + dim Hj ., = 2 dim Hjz(X;R) holds for any k.

@ S. A. Merkulov, Formality of canonical symplectic complexes and Frobenius manifolds, Int. Math.
Res. Not. 1998 (1998), no. 14, 727-733.

V. Guillemin, Symplectic Hodge theory and the d 6-Lemma, preprint, Massachusetts Insitute of
Technology, 2001.

D. Angella, A. Tomassini, Inequalities a /a Frélicher and cohomological decompositions, to appear

in J. Noncommut. Geom.. [iNSAM]

) =) [

K. Chan, Y.-H. Suen, A Frédlicher-type inequality for generalized complex manifolds,
arXiv:1403.1682 [math.DG].
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