Cohomologies on complex manifolds

Daniele Angella

Istituto Nazionale di Alta Matematica
(Dipartimento di Matematica e Informatica, Università di Parma)

June 04, 2014

Introduction, i
It was 50s... i

Compte tenu de la trivialité locale de la d^c-cohomologie sur une variété analytique complexe V, on interprète, du point de vue global, les espaces vectoriels de cohomologie de V à coefficients dans le faisceau des germes de formes différentielles holomorphes, fermées ou non.
Complex geometry encoded in global invariants:

2. **Théorème 1.** — Pour tous entiers $p, q \geq 0$, l'espace vectoriel $H^q(V, \Omega^p)$ est canoniquement isomorphe au sous-espace $H^{p,q}(V)$ des éléments de type (p, q) de la d-cohomologie des courants (resp. des formes différentielles C^*).

What informations in $\overline{\partial}$-cohomology?
What informations in $\overline{\partial}$-cohomology?

↬ Algebraic struct induced by differential algebra $(\wedge^\bullet \cdot X, \overline{\partial}, \wedge)$.

↬ Relation with topological informations.

↬ Relation with topological informations.
What informations in $\overline{\partial}$-cohomology?

q Algebraic struct induced by differential algebra $(\wedge^\bullet X, \overline{\partial}, \wedge)$.

q Relation with topological informations.

Sur une variété compacte V de type kählerien,

Théorème 3. — L'espace de cohomologie $\mathcal{H}(V)$ d'une variété compacte V
de type kählerien est somme directe des espaces $\mathcal{H}^{ab}(V)$.

On a complex (possibly non-Kähler) manifold:
On a complex (possibly non-Kähler) manifold:

Theorem 3. The Dolbeault groups $H^p(M, \Omega)$ form the term E_1 of a spectral sequence, whose term E_∞ is the associated graded C-module of the conveniently filtered de Rham groups. The spectral sequence is stationary after a finite number of steps, and $E_\infty = E_N$ for N sufficiently large.

Interest on non-Kähler manifold since 70s:
Interest on non-Kähler manifold since 70s:

SOME SIMPLE EXAMPLES OF SYMPLECTIC MANIFOLDS

W. P. THURSTON

ABSTRACT. This is a construction of closed symplectic manifolds with no Kaehler structure.

Bott-Chern and Aeppli cohomologies for complex manifolds:

In other words, if we define $\check{H}^k(X)$ by:

$\check{H}^k(X) = A^{k,k}(X) \cap \text{Ker } (d) \cap d^{k-1}A^{k-1,k-1}(X)$

Bott-Chern and Aeppli cohomologies for complex manifolds:

In other words, if we define $\hat{H}^k(X)$ by:

$$\hat{H}^k(X) = A^{*,k}(X) \cap \ker (d) \cap d\Omega^{k-1,*}(X)$$

they provide bridges between de Rham and Dolbeault cohomologies, allowing their comparison.

Aim:

study the algebra of Bott-Chern cohomology, and its relation with de Rham cohomology:
Aim:

study the algebra of Bott-Chern cohomology, and its relation with de Rham cohomology:

- use Bott-Chern as degree of "non-Kählerness"

- in order to characterize $\partial \bar{\partial}$-Lemma;
Aim:
study the algebra of Bott-Chern cohomology, and its relation with de Rham cohomology:

- use Bott-Chern as degree of "non-Kählerness"…
- …in order to characterize $\partial\bar{\partial}$-Lemma;
- develop techniques for computations on special classes of manifolds.

Consider the double complex associated to a cplx mfd X:

$$(\wedge^\bullet \mathcal{O}_X, \partial, \partial)$$
Consider the double complex

\[(\wedge^{\cdot, \cdot} X, \partial, \overline{\partial})\]

associated to a cplx mfd \(X\)

\[H^{\cdot, \cdot}_\overline{\partial}(X) := \frac{\ker \overline{\partial}}{\text{im} \overline{\partial}}\]
In the Frölicher spectral sequence

\[H^p_q(X) \rightarrow H^p_{dR}(X; \mathbb{C}) \]

the Dolbeault cohom plays the role of approximation of de Rham.
In the Frölicher spectral sequence

$$H^\bullet\bullet(\mathcal{X}) \Longrightarrow H^\bullet_{dR}(\mathcal{X}; \mathbb{C})$$

the Dolbeault cohom plays the role of approximation of de Rham.

As a consequence, the Frölicher inequality holds:

$$\sum_{p+q=k} \dim \mathbb{C} H^{p,q}_{\partial}(\mathcal{X}) \geq \dim \mathbb{C} H^k_{dR}(\mathcal{X}; \mathbb{C}).$$

In general, there is no natural map between Dolb and de Rham:
In general, there is no natural map between Dolb and de Rham:
we would like to have a “bridge” between them.

The bridges are provided by Bott-Chern and Aeppli cohomologies.
Cohomologies of complex manifolds, x
Bott-Chern and Aeppli cohomologies, iv

$$H_{BC}^{\bullet,\bullet}(X) := \frac{\ker \partial \cap \ker \overline{\partial}}{\operatorname{im} \overline{\partial \partial}}$$

Cohomologies of complex manifolds, xi
Bott-Chern and Aeppli cohomologies, v

$$H_A^{\bullet,\bullet}(X) := \frac{\ker \partial \overline{\partial}}{\operatorname{im} \partial + \operatorname{im} \overline{\partial}}$$

On cplx mfds, identity induces natural maps

\[H_{\bar{\partial}}^\bullet(X) \leftarrow H_{\partial}^\bullet(X) \rightarrow H_{dR}^\bullet(X; \mathbb{C}) \rightarrow H_{\bar{\partial}}^\bullet(X) \]

\[H_{\partial}^\bullet(X) \leftarrow H_{dR}^\bullet(X; \mathbb{C}) \rightarrow H_{\bar{\partial}}^\bullet(X) \rightarrow H_{\partial}^\bullet(X) \]

By def, a cpt cplx mfd satisfies \(\partial\bar{\partial}\text{-Lemma} \) if every \(\partial \)-closed \(\bar{\partial} \)-closed d-exact form is \(\partial\bar{\partial} \)-exact too
By def, a cpt cplx mfd satisfies $\partial\bar{\partial}$-Lemma if every ∂-closed $\bar{\partial}$-closed d-exact form is $\partial\bar{\partial}$-exact too, equivalently, if all the above maps are isomorphisms.

While compact Kähler mfds satisfy the $\partial\bar{\partial}$-Lemma, . . .
By def, a cpt cplx mfd satisfies $\partial\bar{\partial}$-Lemma if every ∂-closed $\bar{\partial}$-closed d-exact form is $\partial\bar{\partial}$-exact too, equivalently, if all the above maps are isomorphisms.

- While compact Kähler mfds satisfy the $\partial\bar{\partial}$-Lemma, . . .
- . . . Bott-Chern cohomology may supply further informations on the geometry of non-Kähler manifolds.

Cohomological properties of non-Kähler manifolds, vi

inequality à la Frölicher for Bott-Chern cohomology, i

Dolbeault cohomology cares only about horizontal arrows, as Bott-Chern cares only about ingoing arrows, and, dually, Aeppli cares only about outgoing arrows.

Thm (A. Tomassini) X cpt cplx mfd. The following inequality à la Frölicher holds:

$$\sum_{p+q=k} \left(\dim \mathcal{C}H_{p,q}^{BC}(X) + \dim \mathcal{C}H_{p,q}^{A}(X) \right) \geq 2 \dim \mathcal{C}H_{k,dR}(X; \mathbb{C})$$

Furthermore, the equality characterizes the $\partial \bar{\partial}$-Lemma.

Dolbeault cohomology cares only about horizontal arrows, as Bott-Chern cares only about ingoing arrows, and, dually, Aeppli cares only about outgoing arrows.

Since
\[\#\{\text{ingoing}\} + \#\{\text{outgoing}\} \geq \#\{\text{horizontal}\} + \#\{\text{vertical}\} \]

one gets:
Dolbeault cohomology cares only about horizontal arrows, as Bott-Chern cares only about ingoing arrows, and, dually, Aeppli cares only about outgoing arrows. Since
$$\# \{\text{ingoing}\} + \# \{\text{outgoing}\} \geq \# \{\text{horizontal}\} + \# \{\text{vertical}\}$$

one gets:

Thm (—, A. Tomassini)

X cpt cplx mfd. The following inequality à la Frölicher holds:

$$\sum_{p+q=k} (\dim \mathbb{C} H_{BC}^{p,q}(X) + \dim \mathbb{C} H_A^{p,q}(X)) \geq 2 \dim \mathbb{C} H_{dR}^k(X; \mathbb{C}) .$$

Furthermore, the equality characterizes the $\partial \bar{\partial}$-Lemma.

For cpt cplx mfd:

\[\Delta^k = 0 \text{ for any } k \iff \partial\bar{\partial}-\text{Lemma (}= \text{cohomologically-Kähler)} \]

(where: \(\Delta^k := h_{BC}^k + h_A^k - 2b_k \in \mathbb{N} \)).

For cpt cplx surfaces:

\[\text{Kähler} \iff b_1 \text{ even} \iff \text{cohom-Kähler} \]
For cpt cplx mfd:

\[\Delta^k = 0 \text{ for any } k \iff \partial \bar{\partial} \text{-Lemma (}= \text{cohomologically-Kähler)} \]

(\text{where: } \Delta^k := h_{BC}^k + h_A^k - 2b_k \in \mathbb{N}).

Forcpt cplx surfaces:

\text{Kähler } \iff \text{b}_1 \text{ even } \iff \text{cohom-Kähler}

\text{hence } \Delta^1 \text{ and } \Delta^2 \text{ measure just Kählerness.}

\[\text{In fact, non-Kählerness is measured by just } \frac{1}{2} \Delta^2 \in \mathbb{N}. \]
By Hodge theory, \(\dim \mathbb{C} H^p_{BC} \) and \(\dim \mathbb{C} H^p_A \) are upper-semi-continuous for deformations of the complex structure.

\[
\sum_{p+q=k} (\dim \mathbb{C} H^p_{BC}(X) + \dim \mathbb{C} H^p_A(X)) = 2 \dim \mathbb{C} H^k_{dR}(X; \mathbb{C})
\]

is stable for small deformations.
By Hodge theory, \(\dim \mathbb{C} H^{p,q}_{BC} \) and \(\dim \mathbb{C} H^{p,q}_A \) are upper-semi-continuous for deformations of the complex structure. Hence the equality

\[
\sum_{p+q=k} (\dim \mathbb{C} H^{p,q}_{BC}(X) + \dim \mathbb{C} H^{p,q}_A(X)) = 2 \dim \mathbb{C} H^{k}_{\text{dR}}(X; \mathbb{C})
\]

is stable for small deformations. Then:

Cor (Voisin; Wu; Tomasiello; —, A. Tomassini)

The property of satisfying the \(\partial \bar{\partial} \)-Lemma is **open** under deformations.

Problem:

what happens for limits?

If \(J_t \) satisfies \(\partial \bar{\partial} \)-Lem for any \(t \neq 0 \), does \(J_0 \) satisfy \(\partial \bar{\partial} \)-Lem, too?

We need tools for investigating explicit examples.
X compact cplx mfd. We want to compute $H_{BC}^{\bullet \bullet}(X)$.

Hodge theory reduces the probl to a pde system
X compact cplx mfd. We want to compute $H_{BC}^{\bullet\bullet}(X)$.

Hodge theory reduces the probl to a pde system: fixed g Hermitian metric, there is a 4th order elliptic differential operator Δ_{BC} s.t.

\[
H_{BC}^{\bullet\bullet}(X) \simeq \ker \Delta_{BC} = \left\{ u \in \wedge^{p,q}X : \partial u = \bar{\partial} u = (\partial \bar{\partial})^* u \right\} .
\]

For some classes of homogeneous mfds, the solutions of this system may have further symmetries, which reduce to the study of Δ_{BC} on a smaller space.
X compact cplx mfd. We want to compute $H_{BC}^{\bullet,\bullet}(X)$.

Hodge theory reduces the probl to a pde system: fixed g Hermitian metric, there is a 4th order elliptic differential operator Δ_{BC} s.t.

$$H_{BC}^{\bullet,\bullet}(X) \cong \ker \Delta_{BC} = \left\{ u \in \wedge^{p,q}X : \partial u = \bar{\partial} u = (\partial \bar{\partial})^* u \right\}.$$

For some classes of homogeneous mfds, the solutions of this system may have further symmetries, which reduce to the study of Δ_{BC} on a smaller space. If this space is finite-dim, we are reduced to solve a linear system.

In other words, we would like to reduce the study to a H^{\sharp}-model, that is, a sub-algebra

$$\iota : (M^{\bullet,\bullet}, \partial, \bar{\partial}) \hookrightarrow (\wedge^{\bullet,\bullet}X, \partial, \bar{\partial})$$

such that $H^{\sharp}(\iota)$ isomorphism, where $\sharp \in \{dR, \bar{\partial}, \partial, BC, A\}$.
In other words, we would like to reduce the study to a $H_\#\text{-model}$, that is, a sub-algebra

$$\iota : (M^{\bullet, \bullet}, \partial, \bar{\partial}) \hookrightarrow (\wedge^{\bullet, \bullet}X, \partial, \bar{\partial})$$

such that $H_\#(\iota)$ isomorphism, where $\# \in \{dR, \bar{\partial}, \partial, BC, A\}$.

We are interested in $H_\#\text{-computable}$ cplx mfds, that is, admitting a $H_\#\text{-model}$ being finite-dimensional as a vector space.

\[\text{Thm (Nomizu)}\]

$X = \Gamma \backslash G$ nilmanifold (compact quotients of connected simply-connected nilpotent Lie groups G by co-compact discrete subgroups Γ).
Thm (Nomizu)

\[X = \Gamma \backslash G \] nilmanifold (compact quotients of connected simply-connected nilpotent Lie groups \(G \) by co-compact discrete subgroups \(\Gamma \)).

Then it is \(H_{dR} \)-computable.

More precisely, the finite-dimensional sub-space of forms being invariant for the left-action \(G \curvearrowleft X \) is a \(H_{dR} \)-model.
Thm (Nomizu; Console and Fino; —; et al.)

\[X = \Gamma \backslash G \text{ nilmanifold} \]

Thm (Nomizu; Console and Fino; —; et al.)

\[X = \Gamma \backslash G \text{ nilmanifold}, \text{ endowed with a “suitable” left-invariant cplx structure.} \]

Thm \((\text{Nomizu}; \text{Console and Fino}; —; \text{et al.})\)

\(X = \Gamma \backslash G \text{ nilmanifold}, \) endowed with a “suitable” left-invariant cplx structure.

Then:

- de Rham cohom \((\text{Nomizu})\)
- Dolbeault cohom \((\text{Sakane, Cordero, Fernández, Gray, Ugarte, Console, Fino, Rollenske})\)
- Bott-Chern cohom \((-\text{)}\)

can be computed by considering only left-invariant forms.

Iwasawa manifold:

\[
\mathbb{I}_3 := (\mathbb{Z}[i])^3 \setminus \left\{ \left(\begin{array}{ccc} 1 & z^1 & z^3 \\ 0 & 1 & z^2 \\ 0 & 0 & 1 \end{array} \right) \in \text{GL}(\mathbb{C}^3) \right\}
\]
Iwasawa manifold:

\[I_3 := (\mathbb{Z}[i])^3 \setminus \left\{ \begin{pmatrix} 1 & z^1 & z^3 \\ 0 & 1 & z^2 \\ 0 & 0 & 1 \end{pmatrix} \in \text{GL}(\mathbb{C}^3) \right\} \]

- holomorphically-parallelizable nilmanifold

- left-inv co-frame for \((T^{1,0}I_3)^*\):
 \[\{ \varphi^1 := dz^1, \quad \varphi^2 := dz^2, \quad \varphi^3 := dz^3 - z^1 dz^2 \} \]
Iwasawa manifold:

\[\mathbb{I}_3 := (\mathbb{Z} [i])^3 \setminus \left\{ \begin{pmatrix} 1 & z^1 & z^3 \\ 0 & 1 & z^2 \\ 0 & 0 & 1 \end{pmatrix} \in \text{GL} (\mathbb{C}^3) \right\} \]

- holomorphically-parallelizable nilmanifold

- left-inv co-frame for \((T^{1,0} \mathbb{I}_3)^*\):
 \[\{ \varphi^1 := dz^1, \quad \varphi^2 := dz^2, \quad \varphi^3 := dz^3 - z^1 dz^2 \} \]

- structure equations:

\[
\begin{align*}
 d \varphi^1 &= 0 \\
 d \varphi^2 &= 0 \\
 d \varphi^3 &= -\varphi^1 \wedge \varphi^2
\end{align*}
\]

Left-invariant forms provide a finite-dim cohomological-model for the Iwasawa manifold.
Thm (Nakamura)

There exists a locally complete complex-analytic family of complex structures, deformations of \mathbb{I}_3, depending on six parameters. They can be divided into three classes according to their Hodge numbers.

Bott-Chern yields a finer classification of Kuranishi space of \mathbb{I}_3.

<table>
<thead>
<tr>
<th>Class</th>
<th>h_1^{∂}</th>
<th>h_1^{BC}</th>
<th>h_2^{∂}</th>
<th>h_2^{BC}</th>
<th>h_3^{∂}</th>
<th>h_3^{BC}</th>
<th>h_4^{∂}</th>
<th>h_4^{BC}</th>
<th>h_5^{∂}</th>
<th>h_5^{BC}</th>
</tr>
</thead>
<tbody>
<tr>
<td>(i)</td>
<td>5</td>
<td>4</td>
<td>11</td>
<td>10</td>
<td>14</td>
<td>14</td>
<td>11</td>
<td>12</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>(ii.a)</td>
<td>4</td>
<td>4</td>
<td>9</td>
<td>8</td>
<td>12</td>
<td>14</td>
<td>9</td>
<td>11</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>(ii.b)</td>
<td>4</td>
<td>4</td>
<td>9</td>
<td>8</td>
<td>12</td>
<td>14</td>
<td>9</td>
<td>10</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>(iii.a)</td>
<td>4</td>
<td>4</td>
<td>8</td>
<td>6</td>
<td>10</td>
<td>14</td>
<td>8</td>
<td>11</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>(iii.b)</td>
<td>4</td>
<td>4</td>
<td>8</td>
<td>6</td>
<td>10</td>
<td>14</td>
<td>8</td>
<td>10</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>$b_1 = 4$</td>
<td>$b_2 = 8$</td>
<td>$b_3 = 10$</td>
<td>$b_4 = 8$</td>
<td>$b_5 = 4$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
More in general:

any left-invariant complex structure on a 6-dim nilmfld admits a finite-dim cohomological-model (except, perhaps, h_7)

\leadsto cohomol classification of 6-dim nilmfds with left-inv cplx struct.

Problem:

what about closedness of $\bar{\partial}\partial$-Lemma under limits?

But:

- non-tori nilmanifolds never satisfy $\bar{\partial}\partial$-Lemma \hfill (Hasegawa);
Problem: what about closedness of $\partial\bar{\partial}$-Lemma under limits?

But:
- non-tori nilmanifolds never satisfy $\partial\bar{\partial}$-Lemma (Hasegawa);
- tori are closed (Andreotti and Grauert and Stoll).

Therefore:
- consider solvmanifolds (compact quotients of connected simply-connected solvable Lie groups by co-compact discrete subgroups).

Several tools have been developed for computing cohomologies of solvmanifolds with left-inv cplx structure.
Thanks to these tools:

Thm (—, H. Kasuya)

The property of satisfying the \(\partial \overline{\partial} \)-Lemma is non-closed under deformations.

The Lie group

\[
\mathbb{C} \ltimes \phi \mathbb{C}^2 \quad \text{dove} \quad \phi(z) = \begin{pmatrix} e^z & 0 \\ 0 & e^{-z} \end{pmatrix}.
\]

admits a lattice: the quotient is called **Nakamura manifold**.
The Lie group

$$\mathbb{C} \ltimes \phi \mathbb{C}^2 \quad \text{dove} \quad \phi(z) = \begin{pmatrix} e^z & 0 \\ 0 & e^{-z} \end{pmatrix}.$$

admits a lattice: the quotient is called Nakamura manifold. Consider the small deformations in the direction

$$t \frac{\partial}{\partial z^1} \otimes d \bar{z}^1.$$

\[\Rightarrow\] the previous theorems furnish finite-dim sub-complexes to compute Dolbeault and Bott-Chern cohomologies.
Generalized-complex geometry, i
generalized-complex structures, i

- **Cplx structure:**
 \[J: TX \cong TX \] satisfying an **algebraic condition** \(J^2 = -\text{id}_{TX} \)
 and an **analytic condition** (integrability in order to have holomorphic coordinates).

Table of dimensions and Nakamura deformations

<table>
<thead>
<tr>
<th>(\dim_{C} H^*_\mathbb{C})</th>
<th>Nakamura (dR) (\bar{\partial}) BC</th>
<th>deformations (dR) (\bar{\partial}) BC</th>
</tr>
</thead>
<tbody>
<tr>
<td>((0, 0))</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>((1, 0))</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>((0, 1))</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>((2, 0))</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>((1, 1))</td>
<td>9</td>
<td>7</td>
</tr>
<tr>
<td>((0, 2))</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>((3, 0))</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>((2, 1))</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>((1, 2))</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>((0, 3))</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>((3, 1))</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>((2, 2))</td>
<td>9</td>
<td>11</td>
</tr>
<tr>
<td>((1, 3))</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>((3, 2))</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>((2, 3))</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>((3, 3))</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Generalized-complex geometry, ii

generalized-complex structures, ii

- **Cplx structure:**
 \(J: TX \cong TX \) satisfying an algebraic condition \(J^2 = -\text{id}_{TX} \) and an analytic condition (integrability in order to have holomorphic coordinates).

- **Sympl structure:**
 \(\omega: TX \cong T^*X \) satisfying an algebraic condition (\(\omega \) non-deg 2-form) and an analytic condition (\(d\omega = 0 \)).

Hence, consider the bundle \(TX \oplus T^*X \).

Hence, consider the bundle $TX \oplus T^*X$. Note that it admits a natural bilinear pairing: $\langle X + \xi | Y + \eta \rangle = \frac{1}{2} (\iota_X \eta + \iota_Y \xi)$.

Mimicking the def of cplx and sympl structures:

Hence, consider the bundle $TX \oplus T^*X$. Note that it admits a natural bilinear pairing: $\langle X + \xi | Y + \eta \rangle = \frac{1}{2} (\iota_X \eta + \iota_Y \xi)$.

 Mimicking the def of cplx and sympl structures:

 a **generalized-complex structure** on a 2n-dim mfd X is a

 $$\mathcal{J}: TX \oplus T^*X \to TX \oplus T^*X$$

 such that $\mathcal{J}^2 = -\text{id}_{TX \oplus T^*X}$, being orthogonal wrt $\langle -| - \rangle$, and satisfying an integrability condition.

Generalized-complex geometry unifies cplx geom and sympl geom:

- **J cplx struct**: then

 \[J = \begin{pmatrix} -J & 0 \\ 0 & J^* \end{pmatrix} \]

 is generalized-complex;

- **ω sympl struct**: then

 \[J = \begin{pmatrix} 0 & -\omega^{-1} \\ \omega & 0 \end{pmatrix} \]

 is generalized-complex.
This explains the parallel between the cplx and sympl contexts:

for a symplectic manifold, consider the operators

\[d : \bigwedge^\bullet X \to \bigwedge^{\bullet+1} X \quad \text{and} \quad d^\Lambda := [d, -\iota_\omega - 1] : \bigwedge^\bullet X \to \bigwedge^{\bullet-1} X \]

as the counterpart of \(\partial \) and \(\overline{\partial} \) in complex geometry.
This explains the parallel between the cplx and sympl contexts: e.g., for a symplectic manifold, consider the operators
\[
d : \wedge^* X \rightarrow \wedge^{*+1} X \quad \text{and} \quad d^\wedge := [d, -i_\omega] : \wedge^* X \rightarrow \wedge^{*-1} X
\]
as the counterpart of \(\partial \) and \(\overline{\partial} \) in complex geometry.

Define the cohomologies
\[
H_{BC,\omega}^*(X) := \frac{\ker d \cap \ker d^\wedge}{\text{im } d^\wedge} \quad \text{and} \quad H_{A,\omega}^*(X) := \frac{\ker d d^\wedge}{\text{im } d + \text{im } d^\wedge}.
\]

Thm (Merkulov; Guillemin; Cavalcanti; —, A. Tomassini)

Let \(X \) be a 2n-dim cpt symplectic mfd.
Thm (Merkulov; Guillemin; Cavalcanti; —, A. Tomassini)

Let X be a $2n$-dim cpt symplectic mfd. Then, for any k,

$$\dim_{\mathbb{R}} H^{k}_{BC,\omega}(X) + \dim_{\mathbb{R}} H^{k}_{A,\omega} \geq 2 \dim_{\mathbb{R}} H^{k}_{dR}(X; \mathbb{R}).$$

Furthermore, the following are equivalent:

- X satisfies $d d^\wedge$-Lemma (i.e., Bott-Chern and de Rham cohom are natur isom);
- X satisfies Hard Lefschetz Cond (i.e., $[\omega^k] : H^{n-k}_{dR}(X) \to H^{n+k}_{dR}(X)$ isom $\forall k$);
- equality $\dim H^{k}_{BC,\omega}(X) + \dim H^{k}_{A,\omega} = 2 \dim H^{k}_{dR}(X; \mathbb{R})$ holds for any k.

Joint work with: Adriano Tomassini, Hisashi Kasuya, Federico A. Rossi, Maria Giovanna Franzini, Simone Calamai, Weiyi Zhang, Georges Dloussky.

And with the fundamental contribution of Serena, Maria Beatrice and Luca, Alessandra, Maria Rosa, Francesco, Andrea, Matteo, Jasmin, Carlo, Junyan, Michele, Chiara, Simone, Enidano, Laura, Paolo, Marco, Cristiano, Amedeo, Daniele, Matteo, ...