Cohomological properties of symplectic manifolds

Daniele Angella

［iN $\delta A M]$
Istituto Nazionale di Alta Matematica （Dipartimento di Matematica e Informatica，Università di Parma）

June 30， 2014

Kähler manifolds have special cohomological properties，

Introduction, ii

Kähler manifolds have special cohomological properties, both from complex.. .

Sur une variété compacte V de type kählérien,
Théorème 3. - L'espace de cohomologie $\mathscr{H}(\mathrm{V})$ d'une variété compacte V de type kählérien est somme directe des espaces $\mathscr{H}^{a, b}(\mathrm{~V})$.

Introduction, iii
 (non-)Kähler geometry, iii

Kähler manifolds have special cohomological properties, both from complex...

Sur une variété compacte V de type kählérien,
Théorème 3. - L'espace de cohomologie $\mathscr{H}(\mathrm{V})$ d'une variété compacte V de type kählérien est somme directe des espaces $\mathscr{H}^{a, b}(\mathrm{~V})$.

... and from symplectic point of view.

Théoréme 5. - Soient V une variété compacte de type kählérien de dimension complexe n, et u une classe de cohomologie de type kählérien sur V. Alors toute classe de cohomologie a de degré p sur V peut se mettre, d'une manière et d'une seule, sous la forme

$$
\begin{equation*}
\mathbf{a}=\sum_{r \geq(p-n)^{+}} L^{r} \mathbf{a}_{r}, \tag{III}
\end{equation*}
$$

Interest on non－Kähler manifold since 70s．．．

Interest on non－Kähler manifold since 70s．．．

SOME SIMPLE EXAMPLES OF SYMPLECTIC MANIFOLDS

w．P．THURSTON

Abstract．This is a construction of closed symplectic manifolds with no Kaehler structure．

Introduction, vi

(non-)Kähler geometry, vi

Interest on non-Kähler manifold since 70s. . .

SOME SIMPLE EXAMPLES OF SYMPLECTIC MANIFOLDS

W. P. THURSTON

Abstract. This is a construction of closed symplectic manifolds with no Kaehler structure.

... until now.

Generalized Cohomologies and Supersymmetry

Li-Sheng Tseng ${ }^{1}$, Shing-Tung You ${ }^{2}$

Providing a full accounting of all the massless moduli from geometry will necesstate a deeper understanding of non-Kähler geometry than what is currently available. In this paper, we have given yet another example that the mathematical tools involved in non-Kähler flux compactifications, in particular here cohomologies, are generally not identical to those in Kähler geometry and Calabi-Yau compactifications. As geometries that are non-Kähler are much more diverse and flexible than that of Kähler Calabi-Yau, one expects that more refined tools will be required to characterize them. Developing them will certainly help us gain deeper insights into vast regions of the still mysterious landscape of supersymmetric flux vacua.

Introduction, vii
 aim, i

Aim:

- study cohomology decompositions on symplectic manifolds,
- taking inspiration from the complex case

■ and framing into generalized-complex geometry.
■ Special classes of manifolds provide explicit examples.

Cohomologies of symplectic manifolds, i

Brylinski's "Hodge theory" for symplectic manifolds:

Let X be a cpt symplectic manifold. 93-114.
J.-L. Koszul, Crochet de Schouten-Nijenhuis et cohomologie, The mathematical heritage of Élie Cartan (Lyon, 1984), Astérisque 1985, Numero Hors Serie, 257-271.

Cohomologies of symplectic manifolds, ii Brylinski's Hodge theory, ii

Brylinski's "Hodge theory" for symplectic manifolds:
Let X be a cpt symplectic manifold. Consider the operators

$$
d: \Lambda^{\bullet} X \rightarrow \Lambda^{\bullet+1} X \quad \text { and } \quad d^{\wedge}:=\left[d,-\iota_{\omega^{-1}}\right]: \Lambda^{\bullet} X \rightarrow \Lambda^{\bullet-1} X
$$

as the counterpart of ∂ and $\bar{\partial}$ in complex geometry.
J.-L. Brylinski, A differential complex for Poisson manifolds, J. Differ. Geom. 28 (1988), no. 1, 93-114.
気 J.-L. Koszul, Crochet de Schouten-Nijenhuis et cohomologie, The mathematical heritage of Élie Cartan (Lyon, 1984), Astérisque 1985, Numero Hors Serie, 257-271.

Cohomologies of symplectic manifolds, iii

Brylinski's "Hodge theory" for symplectic manifolds:

Let X be a cpt symplectic manifold. Consider the operators

$$
\mathrm{d}: \wedge^{\bullet} X \rightarrow \wedge^{\bullet+1} X \quad \text { and } \quad \mathrm{d}^{\wedge}:=\left[\mathrm{d},-\iota_{\omega^{-1}}\right]: \wedge^{\bullet} X \rightarrow \wedge^{\bullet-1} X
$$

as the counterpart of ∂ and $\bar{\partial}$ in complex geometry.
Then

$$
\left(\wedge^{\bullet} X, \mathrm{~d}, \mathrm{~d}^{\wedge}\right)
$$

is a bi-differential \mathbb{Z}-graded algebra.
J.-L. Brylinski, A differential complex for Poisson manifolds, J. Differ. Geom. 28 (1988), no. 1, 93-114.
J.-L. Koszul, Crochet de Schouten-Nijenhuis et cohomologie, The mathematical heritage of Élie Cartan (Lyon, 1984), Astérisque 1985, Numero Hors Serie, 257-271.

Cohomologies of symplectic manifolds, iv

 symplectic cohomologies, iCohomologies for symplectic manifolds:
Define the cohomologies

$$
H_{B C, \omega}^{\bullet}(X):=\frac{\operatorname{kerd} \cap \operatorname{kerd}^{\wedge}}{i m d d^{\wedge}} \quad \text { and } \quad H_{A, \omega}^{\bullet}(X):=\frac{\operatorname{kerdd^{\wedge }}}{i m d+\mathrm{imd}^{\wedge}} .
$$

L.-S. Tseng, S.-T. Yau, Cohomology and Hodge Theory on Symplectic Manifolds: I. II, J. Differ. Geom. 91 (2012), no. 3, 383-416, 417-443.
C.-J. Tsai, L.-S. Tseng, S.-T. Yau, Cohomology and Hodge Theory on Symplectic Manifolds: III, arXiv:1402.0427v2 [math.SG].
L.-S. Tseng, S.-T. Yau, Generalized Cohomologies and Supersymmetry, Comm. Math. Phys. 326 (2014), no. 3, 875-885.

Cohomologies of symplectic manifolds，\vee

 symplectic cohomologies，iiCohomologies for symplectic manifolds：
Define the cohomologies

$$
H_{B C, \omega}^{\bullet}(X):=\frac{\operatorname{kerd} \cap \operatorname{kerd}^{\wedge}}{i m d^{\wedge}} \quad \text { and } \quad H_{A, \omega}^{\bullet}(X):=\frac{\operatorname{kerdd^{\wedge }}}{i m d+\mathrm{imd}^{\wedge}} .
$$

Hodge theory applies．

L．－S．Tseng，S．－T．Yau，Cohomology and Hodge Theory on Symplectic Manifolds：I．II，J．Differ． Geom． 91 （2012），no．3，383－416，417－443．
C．－J．Tsai，L．－S．Tseng，S．－T．Yau，Cohomology and Hodge Theory on Symplectic Manifolds：III， arXiv：1402．0427v2［math．SG］．
呈
L．－S．Tseng，S．－T．Yau，Generalized Cohomologies and Supersymmetry，Comm．Math．Phys． 326 （2014），no．3，875－885．

Cohomologies of symplectic manifolds，vi

symplectic cohomologies，iii

Natural maps between cohomologies：

The identity induces the maps

Cohomologies of symplectic manifolds, vii

 symplectic cohomologies, ivNatural maps between cohomologies:
The identity induces the maps

- $H_{B C, \omega}^{\circ}$ contains informations on the symplectic struct

Cohomologies of symplectic manifolds, viii

symplectic cohomologies, v

Natural maps between cohomologies:

The identity induces the maps

- $H_{B C, \omega}^{\bullet}$ contains informations on the symplectic struct, and
- $H_{B C, \omega}^{\bullet} \rightarrow H_{d R}^{\bullet}$ allows their comparison with top aspects.

Cohomologies of symplectic manifolds, ix

 cohomological decompositions, iThe surjectivity of the map

$$
H_{B C, \omega}^{\bullet}(X) \rightarrow H_{d R}^{\bullet}(X ; \mathbb{R})
$$

yields to a natural symplectic decomposition of de Rham cohom.
J.-L. Brylinski, A differential complex for Poisson manifolds, J. Differ. Geom. 28 (1988), no. 1, 93-114.

Cohomologies of symplectic manifolds, x cohomological decompositions, ii

The surjectivity of the map

$$
H_{B C, \omega}^{\bullet}(X) \rightarrow H_{d R}^{\bullet}(X ; \mathbb{R})
$$

yields to a natural symplectic decomposition of de Rham cohom.
It corresponds to: each de Rham class admits a d-closed d^{\wedge}-closed representative:

Conjecture 2.2.7. If M is a symplectic manifold which is compact, any cohomology class in $H^{*}(M, \mathrm{C})$ has a representative α such that $d \alpha=\delta \alpha=0$.

Cohomologies of symplectic manifolds, xi

 cohomological decompositions, iii
Thm (Mathieu, Yan, Merkulov, Guillemin, Cavalcanti)

Let X be a compact $2 n$-mfd endowed with ω symplectic.
The following are equivalent:

- Brylinski's conj: any de Rham class has d -closed d^{\wedge}-closed repres;
- Brylinski's \mathcal{C}^{∞}-fullness: $H_{B C, \omega}^{\bullet} \rightarrow H_{d R}^{\bullet}$ surj;

■ Hard Lefschetz Condition: $\left[\omega^{k}\right] \smile \cdot: H_{d R}^{n-k} \rightarrow H_{d R}^{n+k}$ isom, $\forall k$;

- d d ${ }^{\wedge}$-Lemma: $H_{B C, \omega}^{\bullet} \rightarrow H_{d R}^{\bullet}$ inj;
- sympl cohom relation: $H_{B C, \omega}^{\bullet} \rightarrow H_{d R}^{\bullet}$ isom;
- Lefschetz dec in cohom: $H_{d R}^{\bullet}=\bigoplus_{k} L^{k} P H^{\bullet-2 k}$.
O. Mathieu, Harmonic cohomology classes of symplectic manifolds, Comment. Math. Helv. 70 (1995), no. 1, 1-9.
D. Yan, Hodge structure on symplectic manifolds, Adv. Math. 120 (1996), no. 1, 143-154.
G. R. Cavalcanti, New aspects of the $d d^{c}$-lemma, Oxford University D. Phil thesis,
arXiv:math/0501406v1 [math.DG].

Cohomologies of symplectic manifolds, xii

 cohomological decompositions, iv
A weaker symplectic decomposition property:

- Lefschetz decomposition moves to de Rham cohom:

$$
H_{d R}^{\bullet}=\bigoplus_{r, s} H_{\omega}^{(r, s)}(X)
$$

where

$$
H_{\omega}^{(r, s)}(X):=\left\{[\alpha] \in H_{d R}^{2 r+s}(X ; \mathbb{R}): \alpha \in L^{r} P^{s}\right\}
$$

Cohomologies of symplectic manifolds, xiii

 cohomological decompositions, v
Thm (-, A. Tomassini)

Let X be a cpt $2 n$-mfd endowed with ω symplectic. Then

$$
H_{d R}^{2}(X ; \mathbb{R})=H_{\omega}^{(1,0)}(X) \oplus H_{\omega}^{(0,2)}(X) .
$$

Ch. Benson, C. S. Gordon, Kähler and symplectic structures on nilmanifolds, Topology 27 (1988), no. 4, 513-518.
M. Rinaldi, Proprietà coomologiche di varietà simplettiche, Tesi di Laurea, Università degli Studi di Parma, a.a. 2012/2013.

Cohomologies of symplectic manifolds, xiv

 cohomological decompositions, vi
Thm (-, A. Tomassini)

Let X be a cpt $2 n$-mfd endowed with ω symplectic. Then

$$
H_{d R}^{2}(X ; \mathbb{R})=H_{\omega}^{(1,0)}(X) \oplus H_{\omega}^{(0,2)}(X) .
$$

In part, if $2 n=4$, then Lefschetz dec moves to de Rham cohom.

Ch. Benson, C. S. Gordon, Kähler and symplectic structures on nilmanifolds, Topology 27 (1988), no. 4, 513-518.
M. Rinaldi, Proprietà coomologiche di varietà simplettiche, Tesi di Laurea, Università degli Studi di Parma, a.a. 2012/2013.

Cohomologies of symplectic manifolds，XV

 cohomological decompositions，vii
Thm（一，A．Tomassini）

Let X be a cpt $2 n$－mfd endowed with ω symplectic．Then

$$
H_{d R}^{2}(X ; \mathbb{R})=H_{\omega}^{(1,0)}(X) \oplus H_{\omega}^{(0,2)}(X) .
$$

In part，if $2 n=4$ ，then Lefschetz dec moves to de Rham cohom．

But non－tori nilmanifolds does not satisfy HLC（Benson and Gordon）．

Cohomologies of symplectic manifolds，xvi

 cohomological decompositions，viii
Thm（一，A．Tomassini）

Let X be a cpt $2 n$－mfd endowed with ω symplectic．Then

$$
H_{d R}^{2}(X ; \mathbb{R})=H_{\omega}^{(1,0)}(X) \oplus H_{\omega}^{(0,2)}(X) .
$$

In part，if $2 n=4$ ，then Lefschetz dec moves to de Rham cohom．

But non－tori nilmanifolds does not satisfy HLC（Benson and Gordon）．
Higher－dim non－HLC mfds for which Lefschetz dec moves to de Rham cohom by Rinaldi．

Ch．Benson，C．S．Gordon，Kähler and symplectic structures on nilmanifolds，Topology 27 （1988）， no．4，513－518．

M．Rinaldi，Proprietà coomologiche di varietà simplettiche，Tesi di Laurea，Università degli Studi

Cohomologies of symplectic manifolds, xvii

 inequality à la Frölicher for symplectic structures, i
Thm (-, A. Tomassini)

Let X be a $2 n$-dim cpt symplectic mfd.
-, A. Tomassini, Inequalities à la Frölicher and cohomological decomposition, to appear in J. Noncommut. Geom.

Cohomologies of symplectic manifolds, xviii

 inequality à la Frölicher for symplectic structures, ii
Thm (-, A. Tomassini)

Let X be a $2 n$-dim cpt symplectic mfd. Then, for any k,

$$
\operatorname{dim}_{\mathbb{R}} H_{B C, \omega}^{k}(X)+\operatorname{dim}_{\mathbb{R}} H_{A, \omega}^{k} \geq 2 \operatorname{dim}_{\mathbb{R}} H_{d R}^{k}(X ; \mathbb{R})
$$

-, A. Tomassini, Inequalities à la Frölicher and cohomological decomposition, to appear in J

Cohomologies of symplectic manifolds, xix

 inequality à la Frölicher for symplectic structures, iii
Thm (-, A. Tomassini)

Let X be a $2 n$-dim cpt symplectic mfd. Then, for any k,

$$
\operatorname{dim}_{\mathbb{R}} H_{B C, \omega}^{k}(X)+\operatorname{dim}_{\mathbb{R}} H_{A, \omega}^{k} \geq 2 \operatorname{dim}_{\mathbb{R}} H_{d R}^{k}(X ; \mathbb{R})
$$

Furthermore, the equality

$$
\operatorname{dim}_{\mathbb{R}} H_{B C, \omega}^{k}(X)+\operatorname{dim}_{\mathbb{R}} H_{A, \omega}^{k}=2 \operatorname{dim}_{\mathbb{R}} H_{d R}^{k}(X ; \mathbb{R})
$$

holds for any k if and only if X satisfies $d d^{\wedge}$-Lemma.
-, A. Tomassini, Inequalities à la Frölicher and cohomological decomposition, to appear in J. Noncommut. Geom..

Cohomologies of symplectic manifolds, $x x$

 inequality à la Frölicher for symplectic structures, iv(Generalized-)complex case:
■ for compact complex manifolds: (—, A. Tomassini)

$$
\begin{aligned}
\operatorname{dim}_{\mathbb{C}} H_{B C}^{\bullet}(X)+\operatorname{dim}_{\mathbb{C}} H_{A}^{\bullet} & \geq \operatorname{dim}_{\mathbb{C}} H_{\partial}^{\bullet}(X)+\operatorname{dim}_{\mathbb{C}} H_{\bar{\partial}}^{\bullet}(X) \\
& \geq 2 \operatorname{dim}_{\mathbb{C}} H_{d R}^{\bullet}(X ; \mathbb{C})
\end{aligned}
$$

and equalities hold iff $\partial \bar{\partial}$-Lemma;

- the results can be generalized to generalized-complex structures. (-, A. Tomassini; Chan, Suen)
-, A. Tomassini, On the $\partial \bar{\partial}$-Lemma and Bott-Chern cohomology, Invent. Math. 192 (2013), no. 1, 71-81.

Cohomologies of symplectic manifolds，xxi

 inequality à la Frölicher for symplectic structures，vThe point，in the symplectic case，is that the＂associated＂Frölicher spectral sequences degenerate at the first step．
＝．－L．Brylinski，A differential complex for Poisson manifolds，J．Differ．Geom． 28 （1988），no．1， 93－114．
翟
M．Fernández，R．Ibáñez，M．de León，The canonical spectral sequences for Poisson manifolds， Isr．J．Math． 106 （1998），no．1，133－155．

Cohomologies of symplectic manifolds，xxii

 symplectic cohomologies of nil／solv－manifolds，i$X=\Gamma \backslash G$ nilmanifold（compact quotients of connected simply－connected nilpotent Lie groups G by co－compact discrete subgroups Γ ）．

Cohomologies of symplectic manifolds, xxiii

 symplectic cohomologies of nil/solv-manifolds, ii$X=\Gamma \backslash G$ nilmanifold (compact quotients of connected simply-connected nilpotent Lie groups G by co-compact discrete subgroups Γ).

Cohomologies of symplectic manifolds, xxiv

 symplectic cohomologies of nil/solv-manifolds, iii$X=\Gamma \backslash G$ nilmanifold (compact quotients of connected simply-connected nilpotent Lie groups G by co-compact discrete subgroups Γ).

Consider the finite-dim space of forms invariant for left-action $G \curvearrowright X$:

$$
\iota: \wedge^{\bullet} \mathfrak{g}^{*} \hookrightarrow \wedge^{\bullet} X
$$

Thm (Nomizu)

For nilmanifolds, $H_{d R}(\iota)$ isom.

$$
\mathbb{T}^{j_{1}} \leftharpoonup x_{1}
$$

Cohomologies of symplectic manifolds, XXV

$X=\Gamma \backslash G$ solvmanifold (compact quotients of connected simply-connected solvable Lie groups G by co-compact discrete subgroups Γ).
P. de Bartolomeis, A. Tomassini, On solvable generalized Calabi-Yau manifolds, Ann. Inst. Fourier (Grenoble) 56 (2006), no. 5, 1281-1296.
H. Kasuya, Minimal models, formality and hard Lefschetz properties of solvmanifolds with local systems, J. Differ. Geom. 93 (2013), 269-298.

Cohomologies of symplectic manifolds, $x x v i$

 symplectic cohomologies of nil/solv-manifolds, v$X=\Gamma \backslash G$ solvmanifold (compact quotients of connected simply-connected solvable Lie groups G by co-compact discrete subgroups Γ).

In this case, de Rham cohomology may depend on the lattice.
P. de Bartolomeis, A. Tomassini, On solvable generalized Calabi-Yau manifolds, Ann. Inst. Fourier (Grenoble) 56 (2006), no. 5, 1281-1296.

H. Kasuya, Minimal models, formality and hard Lefschetz properties of solvmanifolds with local systems, J. Differ. Geom. 93 (2013), 269-298.

Cohomologies of symplectic manifolds，xxvii

$X=\Gamma \backslash G$ solvmanifold（compact quotients of connected simply－connected solvable Lie groups G by co－compact discrete subgroups Γ ）．

In this case，de Rham cohomology may depend on the lattice．

Thm（Kasuya）

For solvmanifolds $X=\Gamma \backslash G$ ，there exists a finite－dim sub－algebra

$$
\iota:\left(A^{\bullet}, \mathrm{d}\right) \hookrightarrow\left(\wedge^{\bullet} X, \mathrm{~d}\right)
$$

such that $H_{d R}(\iota)$ isom．

P．de Bartolomeis，A．Tomassini，On solvable generalized Calabi－Yau manifolds，Ann．Inst．Fourier （Grenoble） 56 （2006），no．5，1281－1296．

H．Kasuya，Minimal models，formality and hard Lefschetz properties of solvmanifolds with local systems，J．Differ．Geom． 93 （2013），269－298．

Cohomologies of symplectic manifolds，xxviii

 symplectic cohomologies of nil／solv－manifolds，viiTake $X=\Gamma / G$ nilmfd（resp．，solvmfd）．

Cohomologies of symplectic manifolds，xxix

 symplectic cohomologies of nil／solv－manifolds，viiiTake $X=\Gamma / G$ nilmfd（resp．，solvmfd）．
Suppose $\omega \in \wedge^{2} \mathfrak{g}^{*}$（resp．，$\left.\omega \in A_{\Gamma}^{2} \cap \wedge^{2} \mathfrak{g}^{*}\right)$ symplectic．

M．Macrì，Cohomological properties of unimodular six dimensional solvable Lie algebras， arXiv：1111．5958v2［math．DG］．
—，H．Kasuya，Symplectic Bott－Chern cohomology of solvmanifolds，arXiv：1308．4258［math．SG］． $\bar{\equiv}$

Cohomologies of symplectic manifolds，$x x x$

symplectic cohomologies of nil／solv－manifolds，ix

Take $X=\Gamma / G$ nilmfd（resp．，solvmfd）．
Suppose $\omega \in \wedge^{2} \mathfrak{g}^{*}$（resp．，$\omega \in A_{\Gamma}^{2} \cap \wedge^{2} \mathfrak{g}^{*}$ ）symplectic．
Also d^{\wedge}－cohomology can be computed by just $\wedge^{\bullet} \mathfrak{g}^{*}$（resp．，$A_{\Gamma}^{\bullet}$ ）．

M．Macrì，Cohomological properties of unimodular six dimensional solvable Lie algebras， arXiv：1111．5958v2［math．DG］．

Cohomologies of symplectic manifolds，xxxi

 symplectic cohomologies of nil／solv－manifolds，xTake $X=\Gamma / G$ nilmfd（resp．，solvmfd）．
Suppose $\omega \in \wedge^{2} \mathfrak{g}^{*}$（resp．，$\omega \in A_{\Gamma}^{2} \cap \wedge^{2} \mathfrak{g}^{*}$ ）symplectic．
Also d^{\wedge}－cohomology can be computed by just $\wedge^{\bullet} \mathfrak{g}^{*}$（resp．，$A_{\Gamma}^{\bullet}$ ）．In fact，it is isom to de Rham cohom via Brylinski－\star－operator．

M．Macrì，Cohomological properties of unimodular six dimensional solvable Lie algebras， arXiv：1111．5958v2［math．DG］．
気 — H．Kasuya，Symplectic Bott－Chern cohomology of solvmanifolds，arXiv：1308．4258［math．SG］．

Cohomologies of symplectic manifolds，xxxii

symplectic cohomologies of nil／solv－manifolds，xi

Take $X=\Gamma / G$ nilmfd（resp．，solvmfd）．
Suppose $\omega \in \wedge^{2} \mathfrak{g}^{*}$（resp．，$\omega \in A_{\Gamma}^{2} \cap \wedge^{2} \mathfrak{g}^{*}$ ）symplectic．
Also d^{\wedge}－cohomology can be computed by just $\wedge^{\bullet} \mathfrak{g}^{*}$（resp．，$A_{\Gamma}^{\bullet}$ ）．In fact，it is isom to de Rham cohom via Brylinski－\star－operator．

Thm（－，H．Kasuya）

Let $X=\Gamma / G$ solvmfd with $\omega \in A_{\Gamma}^{2}$ left－inv symplectic．Then symplectic cohomologies $H_{B C, \omega}^{\bullet}$ and $H_{A, \omega}^{\bullet}$ are computed by $\left(A_{\Gamma}^{\bullet}, \mathrm{d}\right)$ ．

Generalized-complex structures:

Generalized-complex structures:

- cplx structure:
$J: T X \xrightarrow{\simeq} T X$ satisfying an algebraic condition $\left(J^{2}=-\mathrm{id} T X\right)$ and an analytic condition (integrability in order to have holomorphic coordinates).

Generalized-complex structures:

- cplx structure:
$J: T X \xrightarrow{\simeq} T X$ satisfying an algebraic condition $\left(J^{2}=-\mathrm{id} T X\right)$ and an analytic condition (integrability in order to have holomorphic coordinates).
- sympl structure:
$\omega: T X \xrightarrow{\simeq} T^{*} X$ satisfying an algebraic condition (ω non-deg 2 -form) and an analytic condition ($\mathrm{d} \omega=0$).

Hence, consider the bundle $T X \oplus T^{*} X$.
N. J. Hitchin, Generalized Calabi-Yau manifolds, Q. J. Math. 54 (2003), no. 3, 281-308.
M. Gualtieri, Generalized complex geometry, Oxford University DPhil thesis, arXiv:math/0401221
[math.DG].
G. R. Cavalcanti, New aspects of the $d d^{c}$-lemma, Oxford University D. Phil thesis,

Hence, consider the bundle $T X \oplus T^{*} X$. Note that it admits a natural bilinear pairing: $\langle X+\xi \mid Y+\eta\rangle=\frac{1}{2}\left(\iota_{X} \eta+\iota_{Y} \xi\right)$.
N. J. Hitchin, Generalized Calabi-Yau manifolds, Q. J. Math. 54 (2003), no. 3, 281-308.
M. Gualtieri, Generalized complex geometry, Oxford University DPhil thesis, arXiv:math/0401221 [math.DG].
G. R. Cavalcanti, New aspects of the $d d^{c}$-lemma, Oxford University D. Phil thesis, arXiv:math/0501406 [math.DG].

Hence, consider the bundle $T X \oplus T^{*} X$. Note that it admits a natural bilinear pairing: $\langle X+\xi \mid Y+\eta\rangle=\frac{1}{2}\left(\iota_{X} \eta+\iota_{Y} \xi\right)$.

Mimicking the def of cplx and sympl structures:
N. J. Hitchin, Generalized Calabi-Yau manifolds, Q. J. Math. 54 (2003), no. 3, 281-308.
M. Gualtieri, Generalized complex geometry, Oxford University DPhil thesis, arXiv:math/0401221 [math.DG].

Hence，consider the bundle $T X \oplus T^{*} X$ ．Note that it admits a natural bilinear pairing：$\langle X+\xi \mid Y+\eta\rangle=\frac{1}{2}\left(\iota_{X} \eta+\iota_{Y} \xi\right)$ ．

Mimicking the def of cplx and sympl structures：
a generalized－complex structure on a $2 n$－dim $\mathrm{mfd} X$ is a

$$
\mathcal{J}: T X \oplus T^{*} X \rightarrow T X \oplus T^{*} X
$$

such that $\mathcal{J}^{2}=-\mathrm{id}_{T X \oplus T^{*} X}$ ，being orthogonal wrt $\langle-\mid=\rangle$ ，and satisfying an integrability condition．

N．J．Hitchin，Generalized Calabi－Yau manifolds，Q．J．Math． 54 （2003），no．3，281－308．
M．Gualtieri，Generalized complex geometry，Oxford University DPhil thesis，arXiv：math／0401221 ［math．DG］．
G．R．Cavalcanti，New aspects of the $d d^{c}$－lemma，Oxford University D．Phil thesis， arXiv：math／0501406［math．DG］．

Generalized－cplx geom unifies cplx geom and sympl geom：

Generalized－cplx geom unifies cplx geom and sympl geom：

－J cplx struct：

$$
\mathcal{J}=\left(\begin{array}{c|c}
-J & 0 \\
\hline 0 & J^{*}
\end{array}\right) \quad \text { gen-cplx; }
$$

－ω sympl struct：

$$
\mathcal{J}=\left(\begin{array}{c|c}
0 & -\omega^{-1} \\
\hline \omega & 0
\end{array}\right) \quad \text { gen-cplx. }
$$

As in cplx／sympl cases，generalized－complex structures gives

$$
\left(U^{\bullet}, \partial, \bar{\partial}\right) \text { bi-diff graded algebra. }
$$

As in cplx／sympl cases，generalized－complex structures gives

$$
\left(U^{\bullet}, \partial, \bar{\partial}\right) \quad \text { bi-diff graded algebra. }
$$

Hence \rightsquigarrow generalized－cplx cohomologies：$G H_{\partial}^{\bullet}, G H_{B C}^{\circ}, G H_{A}^{\bullet}$ ．

Generalized－complex geometry，xii

generalized－complex cohomologies，iii

Explicit examples can be obtained by：

Thm（一，S．Calamai）

For nilmanifolds with＂suitable＂gen－cplx structures， generalized－complex cohomologies are computed by just left－invariant forms．

Explicit examples can be obtained by:

Thm (一, S. Calamai)

For nilmanifolds with "suitable" gen-cplx structures, generalized-complex cohomologies are computed by just left-invariant forms.

The proof uses a Leray thm for gen-cplx structures
-, S. Calamai, Cohomologies of generalized-complex manifolds and nilmanifolds, arXiv:1405.0981 [math.DG].

Generalized-complex geometry, xiv

 generalized-complex cohomologies, vExplicit examples can be obtained by:

Thm (-, S. Calamai)

For nilmanifolds with "suitable" gen-cplx structures, generalized-complex cohomologies are computed by just left-invariant forms.

The proof uses a Leray thm for gen-cplx structures, which gives also a generalized-Poincaré Lemma.

When

$$
G H_{B C}^{\circ}(X) \rightarrow G H_{d R}(X) \text { surj, }
$$

we have gen-cplx cohomological decomposition of de Rham.

- , S. Calamai, A. Latorre, On cohomological decomposition of generalized-complex structures, arXiv:1406.2101 [math.DG].
T.-J. Li, W. Zhang, Comparing tamed and compatible symplectic cones and cohomological properties of almost complex manifolds, Comm. Anal. Geom. 17 (2009), no. 4, 651-684.

When

$$
G H_{B C}^{*}(X) \rightarrow G H_{d R}(X) \text { surj, }
$$

we have gen-cplx cohomological decomposition of de Rham.

- In the (alm-) cplx case, it coincides with Li and Zhang's \mathcal{C}^{∞}-pure-and-fullness.
- , S. Calamai, A. Latorre, On cohomological decomposition of generalized-complex structures, arXiv:1406.2101 [math.DG].
品
T.-J. Li, W. Zhang, Comparing tamed and compatible symplectic cones and cohomological

When

$$
G H_{B C}^{\bullet}(X) \rightarrow G H_{d R}(X) \text { surj, }
$$

we have gen－cplx cohomological decomposition of de Rham．
－In the（alm－）cplx case，it coincides with Li and Zhang＇s \mathcal{C}^{∞}－pure－and－fullness．

■ In the sympl case，it coincides with Brylinski＇s \mathcal{C}^{∞}－fullness，equiv， $d d^{\wedge}$－Lemma．
－，S．Calamai，A．Latorre，On cohomological decomposition of generalized－complex structures， arXiv：1406．2101［math．DG］．
T．－J．Li，W．Zhang，Comparing tamed and compatible symplectic cones and cohomological properties of almost complex manifolds，Comm．Anal．Geom． 17 （2009），no．4，651－684．

Example：

moduli－space of left－inv cplx structures on Iwasawa manifold has two connected components．

G．R．Cavalcanti，M．Gualtieri，Generalized complex structures on nilmanifolds，J．Symplectic

Example:

moduli-space of left-inv cplx structures on Iwasawa manifold has two connected components.

- Abelian and holomorphically-parallelizable cplx structures are \mathcal{C}^{∞}-pure-and-full in sense of Li and Zhang.
G. R. Cavalcanti, M. Gualtieri, Generalized complex structures on nilmanifolds, J. Symplectic Geom. 2 (2004), no. 3, 393-410.

Example:

moduli-space of left-inv cplx structures on Iwasawa manifold has two connected components.

- Abelian and holomorphically-parallelizable cplx structures are \mathcal{C}^{∞}-pure-and-full in sense of Li and Zhang.
- They are disconnected as cplx structures...

Example:

moduli-space of left-inv cplx structures on Iwasawa manifold has two connected components.

- Abelian and holomorphically-parallelizable cplx structures are \mathcal{C}^{∞}-pure-and-full in sense of Li and Zhang.
- They are disconnected as cplx structures...
... but connected as gen-cplx structures by Cavalcanti and Gualtieri.
G. R. Cavalcanti, M. Gualtieri, Generalized complex structures on nilmanifolds, J. Symplectic Geom. 2 (2004), no. 3, 393-410.

Example:

moduli-space of left-inv cplx structures on Iwasawa manifold has two connected components.

- Abelian and holomorphically-parallelizable cplx structures are \mathcal{C}^{∞}-pure-and-full in sense of Li and Zhang.
- They are disconnected as cplx structures... ... but connected as gen-cplx structures by Cavalcanti and Gualtieri.
- In fact, the connecting gen-cplx structure is \mathcal{C}^{∞}-full as gen-cplx (-, S. Calamai, A. Latorre).

