# Cohomologies on Symplectic Manifolds 

## Raquel Villacampa

Joint work with Luis Ugarte (arXiv:1404.6777(math.SG))

Parma, November 28th 2014

## Principal ideas

(1) There exist several cohomologies on symplectic manifolds: harmonic, primitive, filtered and coeffective. All of them appear independently in the literature.

Objective 1 Relate all these cohomologies by defining the generalized coeffective cohomology.

## Principal ideas

(1) There exist several cohomologies on symplectic manifolds: harmonic, primitive, filtered and coeffective. All of them appear independently in the literature.

Objective 1 Relate all these cohomologies by defining the generalized coeffective cohomology.
(2) Harmonic, primitive and filtered cohomologies are defined in terms of $d^{\wedge}, \partial_{+}, \partial_{-}$and therefore these cohomologies are difficult to compute.

Objective 2 Provide a coeffective version of these cohomologies so that computations are easier.

## Principal ideas

(1) There exist several cohomologies on symplectic manifolds: harmonic, primitive, filtered and coeffective. All of them appear independently in the literature.

Objective 1 Relate all these cohomologies by defining the generalized coeffective cohomology.
(2) Harmonic, primitive and filtered cohomologies are defined in terms of $d^{\wedge}, \partial_{+}, \partial_{-}$and therefore these cohomologies are difficult to compute.

Objective 2 Provide a coeffective version of these cohomologies so that computations are easier.
(3) The dimension of all these cohomology groups can vary when the symplectic form does (notion of flexibility).

Objective 3 Study harmonic and filtered flexibility in terms of coeffective flexibility.

## SYMPLECTIC HARMONICITY I

- $\left(M^{2 n}, \omega\right)$ symplectic manifold.
- $\Omega^{*}(M)$ the space of differential forms on $M$.
[Brylinski 88] $\alpha \in \Omega^{*}(M)$ is symplectically harmonic if $d \alpha=0=d^{\wedge} \alpha$. ( $d^{\wedge}$ is the adjoint of $d$ with respect to $*_{\omega}$.)
- Notation: $\Omega_{\mathrm{hr}}^{*}(M)$.


## SYMPLECTIC HARMONICITY I

- $\left(M^{2 n}, \omega\right)$ symplectic manifold.
- $\Omega^{*}(M)$ the space of differential forms on $M$.
[Brylinski 88] $\alpha \in \Omega^{*}(M)$ is symplectically harmonic if $d \alpha=0=d^{\wedge} \alpha$. ( $d^{\wedge}$ is the adjoint of $d$ with respect to $*_{\omega}$.)
- Notation: $\Omega_{\mathrm{hr}}^{*}(M)$.
- Problem: there are non-zero exact symplectically harmonic forms (important difference w.r.t. the usual Hodge Theory).


## SYMPLECTIC HARMONICITY I

- $\left(M^{2 n}, \omega\right)$ symplectic manifold.
- $\Omega^{*}(M)$ the space of differential forms on $M$.
[Brylinski 88] $\alpha \in \Omega^{*}(M)$ is symplectically harmonic if $d \alpha=0=d^{\wedge} \alpha$. ( $d^{\wedge}$ is the adjoint of $d$ with respect to $*_{\omega}$.)
- Notation: $\Omega_{\mathrm{hr}}^{*}(M)$.
- Problem: there are non-zero exact symplectically harmonic forms (important difference w.r.t. the usual Hodge Theory).

Symplectically harmonic cohomology: $H_{\mathrm{hr}}^{q}(M)=\frac{\Omega_{\mathrm{hr}}^{q}(M)}{\left(\Omega_{\mathrm{hr}}^{q}(M) \cap \mathrm{imd} d\right.}$.

- $H_{\mathrm{hr}}^{q}(M) \stackrel{?}{=} H^{q}(M), q=0, \ldots, 2 n$.

Yes $\Longleftrightarrow \operatorname{HLC}\left(L^{k}: H^{n-k} \xrightarrow{\cong} H^{n+k}, k=1, \ldots, n\right)$.
[Mathieu 95], [Yan 96]

## SYMPLECTIC HARMONICITY II

## Theorem [lbáñez-Rudyak-Tralle-Ugarte 01], [Yamada 02]

- $H_{\mathrm{hr}}^{q}(M)=P^{q}(M, \omega)+L\left(H_{\mathrm{hr}}^{q-2}(M)\right), \quad q=0, \ldots, n$,
- $H_{\mathrm{hr}}^{q}(M)=\operatorname{lm}\left\{L^{q-n}: H_{\mathrm{hr}}^{2 n-q}(M) \rightarrow H^{q}(M)\right), q=n+1, \ldots, 2 n$,
where

$$
P^{q}(M)=\left\{[\alpha] \in H^{q}(M) \mid L^{n-q+1}[\alpha]=0\right\} \subset H_{\mathrm{hr}}^{q}(M)
$$

## SYMPLECTIC HARMONICITY II

Theorem [lbáñez-Rudyak-Tralle-Ugarte 01], [Yamada 02]

- $H_{\mathrm{hr}}^{q}(M)=P^{q}(M, \omega)+L\left(H_{\mathrm{hr}}^{q-2}(M)\right), \quad q=0, \ldots, n$,
- $H_{\mathrm{hr}}^{q}(M)=\operatorname{lm}\left\{L^{q-n}: H_{\mathrm{hr}}^{2 n-q}(M) \rightarrow H^{q}(M)\right), q=n+1, \ldots, 2 n$, where

$$
P^{q}(M)=\left\{[\alpha] \in H^{q}(M) \mid L^{n-q+1}[\alpha]=0\right\} \subset H_{\mathrm{hr}}^{q}(M) .
$$

If $\left(M^{2 n}, \omega\right)$ is of finite type: $h_{q}(M)=\operatorname{dim} H_{\mathrm{hr}}^{q}(M)$ is finite.

- $h_{i}=b_{i}$ for $i=0,1,2$.
- If $\left(M^{2 n}, \omega\right)$ is closed: $h_{2 n}=b_{2 n}, h_{2 n-1}$ is even.


## Primitive cohomologies [Tseng-Yaul \& II, 12]

New finite dimensional cohomologies on symplectic manifolds that contain unique harmonic representative within each class:

## Primitive cohomologies [Tseng-Yaul \& II, 12]

New finite dimensional cohomologies on symplectic manifolds that contain unique harmonic representative within each class:

- [Tseng-Yau I, 12] Idea: Bott-Chern and Aeppli in the symplectic setting.

$$
H_{d+d^{\wedge}}^{*}=\frac{\operatorname{Ker}\left(d+d^{\wedge}\right)}{\operatorname{Im} d d^{\wedge}}, \quad H_{d d^{\wedge}}^{*}=\frac{\operatorname{Ker} d d^{\wedge}}{\operatorname{Im} d+\operatorname{Im} d^{\wedge}}
$$

Primitive cohomologies: $P H_{d+d^{\wedge}}^{q}$ and $P H_{d d^{\wedge}}^{q}$, for $q \leq n$.

## Primitive cohomologies [Tseng-Yaul \& II, 12]

New finite dimensional cohomologies on symplectic manifolds that contain unique harmonic representative within each class:

- [Tseng-Yau I, 12] Idea: Bott-Chern and Aeppli in the symplectic setting.

$$
H_{d+d^{\wedge}}^{*}=\frac{\operatorname{Ker}\left(d+d^{\wedge}\right)}{\operatorname{Im} d d^{\wedge}}, \quad H_{d d^{\wedge}}^{*}=\frac{\operatorname{Ker} d d^{\wedge}}{\operatorname{Im} d+\operatorname{Im} d^{\wedge}}
$$

Primitive cohomologies: $P H_{d+d^{\wedge}}^{q}$ and $P H_{d d^{\wedge}}^{q}$, for $q \leq n$.

- [Tseng-Yau II, 12] Idea: Dolbeault in symplectic case: $d=\partial_{+}+\omega \wedge \partial_{-}$

$$
H_{\partial_{+}}^{*} \text { and } H_{\partial_{-}}^{*} .
$$

Primitive cohomologies: $P H_{\partial_{+}}^{q}$ and $P H_{\partial_{-}}^{q}$, for $q \leq n-1$.

## FILTERED COHOMOLOGIES [Tsai-Tseng-Yau III, 14]

$\left\{P H_{d+d^{\wedge}}^{*}, P H_{d d^{\wedge}}^{*}, P H_{\partial_{+}}^{*}, P H_{\partial_{-}}^{*}\right\}$ are primitive cohomologies.

## FILTERED COHOMOLOGIES [Tsai-Tseng-Yau III, 14]

$\left\{P H_{d+d^{\wedge}}^{*}, P H_{d d^{\wedge}}^{*}, P H_{\partial_{+}}^{*}, P H_{\partial-}^{*}\right\}$ are primitive cohomologies. Idea: There exist non-primitive ones?

## FILTERED COHOMOLOGIES [Tsai-Tseng-Yau III, 14]

$\left\{P H_{d+d^{\wedge}}^{*}, P H_{d d^{\wedge}}^{*}, P H_{\partial_{+}}^{*}, P H_{\partial-}^{*}\right\}$ are primitive cohomologies.
Idea: There exist non-primitive ones?
Filtered cohomologies: $F^{p} H_{+}^{q}, F^{p} H_{-}^{q}$, for $q=0, \ldots, n+p$, and $p=0, \ldots, n$, that extend the primitive ones.

## FILTERED COHOMOLOGIES [Tsai-Tseng-Yau III, 14]

$\left\{P H_{d+d^{\wedge}}^{*}, P H_{d d^{\wedge}}^{*}, P H_{\partial_{+}}^{*}, P H_{\partial_{-}}^{*}\right\}$ are primitive cohomologies.
Idea: There exist non-primitive ones?
Filtered cohomologies: $F^{p} H_{+}^{q}, F^{p} H_{-}^{q}$, for $q=0, \ldots, n+p$, and $p=0, \ldots, n$, that extend the primitive ones.

Relations between cohomologies for closed symplectic manifolds:

- $P H_{\partial_{+}}^{q}=P H_{\partial_{-}}^{q}, q \leq n-1$.
- $P H_{d d^{\wedge}}^{q}=P H_{d+d^{\wedge}}^{q}, q \leq n$.
- $F^{p} H_{+}^{n+p}=P H_{d d^{n}}^{n-p}$.
- $F^{p} H_{-}^{n+p}=P H_{d+d^{\prime}}^{n-p}$.
- $F^{p} H_{+}^{q}=F^{p} H_{-}^{q}$.


## Coeffective cohomology I

## Definition [Bouché 90 ]

$\alpha \in \Omega^{*}(M)$ is coeffective if $L_{\omega}(\alpha):=\alpha \wedge \omega=0$. Notation: $\mathfrak{C}_{(1)}^{q}(M)$.

- $d\left(\mathfrak{C}_{(1)}^{q}(M)\right) \subset \mathfrak{C}_{(1)}^{q+1}(M)$.

Coeffective cohomology: $H_{(1)}^{q}(M)=\frac{\operatorname{Ker}\left\{d: \mathfrak{C}_{(1)}^{q}(M) \rightarrow \mathfrak{C}_{(1)}^{q+1}(M)\right\}}{\operatorname{Im}\left\{d: \mathfrak{C}_{(1)}^{q-1}(M) \rightarrow \mathfrak{C}_{(1)}^{q}(M)\right\}}$.

- $L_{\omega}: \Omega^{q} \rightarrow \Omega^{q+2}$ injective $\forall q \leq n-1 \Longrightarrow H_{(1)}^{q}(M)=0, \quad \forall q \leq n-1$.
- $H_{(1)}^{q}(M)=H^{q}(M), q=2 n$.


## Coeffective cohomology il

If $\left(M^{2 n}, \omega\right)$ is of finite type:


Notation: $c_{q}^{(1)}(M)=\operatorname{dim} H_{(1)}^{q}(M), \quad q \geq n+1$.

## Coeffective cohomology il

If $\left(M^{2 n}, \omega\right)$ is of finite type:

$$
\underbrace{H_{(1)}^{0}(M), \ldots, H_{(1)}^{n-1}(M)}_{=0}, H_{(1)}^{n}(M), \underbrace{H_{(1)}^{n+1}(M), \ldots, H_{(1)}^{2 n}(M)}_{\text {are finite dimensional }}
$$

Notation: $c_{q}^{(1)}(M)=\operatorname{dim} H_{(1)}^{q}(M), \quad q \geq n+1$.
Problem: $H_{(1)}^{n}(M)$ can be infinite dimensional

## Coeffective cohomology II

If $\left(M^{2 n}, \omega\right)$ is of finite type:

$$
\underbrace{H_{(1)}^{0}(M), \ldots, H_{(1)}^{n-1}(M)}_{=0}, H_{(1)}^{n}(M), \underbrace{H_{(1)}^{n+1}(M), \ldots, H_{(1)}^{2 n}(M)}_{\text {are finite dimensional }} .
$$

Notation: $c_{q}^{(1)}(M)=\operatorname{dim} H_{(1)}^{q}(M), \quad q \geq n+1$.
Problem: $H_{(1)}^{n}(M)$ can be infinite dimensional
[Fernández-lbáñez-de León 98] For $q \geq n+1$ :

$$
b_{q}-b_{q+2} \leq c_{q}^{(1)} \leq b_{q}+b_{q+1}
$$

## Coeffective cohomology il

If $\left(M^{2 n}, \omega\right)$ is of finite type:

$$
\underbrace{H_{(1)}^{0}(M), \ldots, H_{(1)}^{n-1}(M)}_{=0}, H_{(1)}^{n}(M), \underbrace{H_{(1)}^{n+1}(M), \ldots, H_{(1)}^{2 n}(M)}_{\text {are finite dimensional }}
$$

Notation: $c_{q}^{(1)}(M)=\operatorname{dim} H_{(1)}^{q}(M), \quad q \geq n+1$.
Problem: $H_{(1)}^{n}(M)$ can be infinite dimensional
[Fernández-Ibáñez-de León 98] For $q \geq n+1$ :

$$
b_{q}-b_{q+2} \leq c_{q}^{(1)} \leq b_{q}+b_{q+1}
$$

- $\mathrm{HLC} \Longrightarrow b_{q}-b_{q+2}=c_{q}^{(1)}$.


## Coeffective cohomology il

If $\left(M^{2 n}, \omega\right)$ is of finite type:

$$
\underbrace{H_{(1)}^{0}(M), \ldots, H_{(1)}^{n-1}(M)}_{=0}, H_{(1)}^{n}(M), \underbrace{H_{(1)}^{n+1}(M), \ldots, H_{(1)}^{2 n}(M)}_{\text {are finite dimensional }}
$$

Notation: $c_{q}^{(1)}(M)=\operatorname{dim} H_{(1)}^{q}(M), \quad q \geq n+1$.
Problem: $H_{(1)}^{n}(M)$ can be infinite dimensional
[Fernández-Ibáñez-de León 98] For $q \geq n+1$ :

$$
b_{q}-b_{q+2} \leq c_{q}^{(1)} \leq b_{q}+b_{q+1}
$$

- $\mathrm{HLC} \Longrightarrow b_{q}-b_{q+2}=c_{q}^{(1)}$.
- $\omega$ exact $\Longrightarrow b_{q}+b_{q+1}=c_{q}^{(1)}$.


## k-COEFFECTIVE COHOMOLOGIES I

$\alpha \in \Omega^{*}(M)$ is $k$-coeffective if $L_{\omega}^{k}(\alpha):=\alpha \wedge \omega^{k}=0 . \quad$ Notation: $\mathfrak{C}_{(k)}^{q}(M)$.

## k-COEFFECTIVE COHOMOLOGIES I

$$
\alpha \in \Omega^{*}(M) \text { is } k \text {-coeffective if } L_{\omega}^{k}(\alpha):=\alpha \wedge \omega^{k}=0 . \quad \text { Notation: } \mathfrak{C}_{(k)}^{q}(M)
$$

$$
k \text {-Coeffective cohomology: } H_{(k)}^{q}(M)=\frac{\operatorname{Ker}\left\{d: \mathbb{C}_{(k)}^{q}(M) \rightarrow \mathfrak{C}_{(k)}^{q+1}(M)\right\}}{\operatorname{Im}\left\{d: \mathfrak{C}_{(k)}^{q-1}(M) \rightarrow \mathfrak{C}_{(k)}^{q}(M)\right\}} .
$$

## k-COEFFECTIVE COHOMOLOGIES I

$$
\alpha \in \Omega^{*}(M) \text { is } k \text {-coeffective if } L_{\omega}^{k}(\alpha):=\alpha \wedge \omega^{k}=0 . \quad \text { Notation: } \mathbb{C}_{(k)}^{q}(M) \text {. }
$$

$$
k \text {-Coeffective cohomology: } H_{(k)}^{q}(M)=\frac{\operatorname{Ker}\left\{d: \mathbb{C}_{(k)}^{q}(M) \rightarrow \mathbb{C}_{(k)}^{q+1}(M)\right\}}{\operatorname{lm}\left\{d: \mathbb{C}_{(k)}^{q-1}(M) \rightarrow \mathbb{C}_{(k)}^{q}(M)\right\}} .
$$

If $\left(M^{2 n}, \omega\right)$ is of finite type:

$$
\underbrace{H_{(k)}^{0}, \ldots, H_{(k)}^{n-k}}_{=0}, H_{(k)}^{n-k+1}, \underbrace{H_{(k)}^{n-k+2}, \ldots, H_{(k)}^{2 n-2 k+1}, \underbrace{H_{(k)}^{2 n-2 k+2}, \ldots, H_{(k)}^{2 n}}_{=H^{q}}}_{\text {are finite dimensional }}
$$

## k-COEFFECTIVE COHOMOLOGIES I

$$
\alpha \in \Omega^{*}(M) \text { is } k \text {-coeffective if } L_{\omega}^{k}(\alpha):=\alpha \wedge \omega^{k}=0 . \quad \text { Notation: } \mathfrak{C}_{(k)}^{q}(M)
$$

$$
k \text {-Coeffective cohomology: } H_{(k)}^{q}(M)=\frac{\operatorname{Ker}\left\{d: \mathfrak{C}_{(k)}^{q}(M) \rightarrow \mathfrak{C}_{(k)}^{q+1}(M)\right\}}{\operatorname{Im}\left\{d: \mathfrak{C}_{(k)}^{q-1}(M) \rightarrow \mathfrak{C}_{(k)}^{q}(M)\right\}} .
$$

If $\left(M^{2 n}, \omega\right)$ is of finite type:

$$
\underbrace{H_{(k)}^{0}, \ldots, H_{(k)}^{n-k}}_{=0}, H_{(k)}^{n-k+1}, \underbrace{H_{(k)}^{n-k+2}, \ldots, H_{(k)}^{2 n-2 k+1}, \underbrace{H_{(k)}^{2 n-2 k+2}, \ldots, H_{(k)}^{2 n}}_{=H^{q}}}_{\text {are finite dimensional }}
$$

Problem: $H_{(k)}^{n-k+1}(M)$ can be infinite dimensional

## k-COEFFECTIVE COHOMOLOGIES II

Notation: $c_{q}^{(k)}(M)=\operatorname{dim} H_{(k)}^{q}(M), \quad q \geq n-k+2$.

## k-COEFFECTIVE COHOMOLOGIES II

Notation: $c_{q}^{(k)}(M)=\operatorname{dim} H_{(k)}^{q}(M), \quad q \geq n-k+2$.

$$
\begin{equation*}
b_{q}-b_{q+2 k} \leq c_{q}^{(k)} \leq b_{q}+b_{q+2 k-1} . \tag{1}
\end{equation*}
$$

- $\mathrm{HLC} \Longrightarrow b_{q}-b_{q+2 k}=c_{q}^{(k)}$.
- $\omega$ exact $\Longrightarrow b_{q}+b_{q+2 k-1}=c_{q}^{(k)}$.


## k-COEFFECTIVE COHOMOLOGIES II

Notation: $c_{q}^{(k)}(M)=\operatorname{dim} H_{(k)}^{q}(M), \quad q \geq n-k+2$.

$$
\begin{equation*}
b_{q}-b_{q+2 k} \leq c_{q}^{(k)} \leq b_{q}+b_{q+2 k-1} . \tag{1}
\end{equation*}
$$

- $\mathrm{HLC} \Longrightarrow b_{q}-b_{q+2 k}=c_{q}^{(k)}$.
- $\omega$ exact $\Longrightarrow b_{q}+b_{q+2 k-1}=c_{q}^{(k)}$.


## Objective

Define a new group for degree $n-k+1$ such that:

- It is finite dimensional.
- Its dimension satisfies similar inequalities to (1)


## Generalized coeffective cohomologies

If $\left(M^{2 n}, \omega\right)$ is of finite type, for degree $n-k+1$ we define a new finite-dimensional space (using a long exact sequence in cohomology)

## Definition

$$
\hat{H}^{n-k+1}(M)=\frac{H_{(k)}^{n-k+1}(M)}{\frac{H^{n+k}\left(L^{k}\left(\Omega^{k}(M)\right)\right)}{H^{n-k}(M)}} \cdot \operatorname{dim} \hat{H}^{n-k+1}(M)=\hat{c}_{n-k+1} .
$$

- $b_{n-k+1}-b_{n+k+1} \leq \hat{c}_{n-k+1} \leq b_{n-k+1}$ (HLC and exact $\Rightarrow=$ )


## Generalized coeffective cohomologies

If $\left(M^{2 n}, \omega\right)$ is of finite type, for degree $n-k+1$ we define a new finite-dimensional space (using a long exact sequence in cohomology)

## Definition

$$
\hat{H}^{n-k+1}(M)=\frac{H_{(k)}^{n-k+1}(M)}{\frac{H^{n+k}\left(L^{k}\left(\Omega^{k}(M)\right)\right)}{H^{n-k}(M)}} \cdot \operatorname{dim} \hat{H}^{n-k+1}(M)=\hat{c}_{n-k+1} .
$$

- $b_{n-k+1}-b_{n+k+1} \leq \hat{c}_{n-k+1} \leq b_{n-k+1}$ (HLC and exact $\Rightarrow=$ )

Generalized coeffective cohomology

$$
\hat{H}^{n-k+1}, H_{(k)}^{n-k+2}, \ldots, H_{(k)}^{2 n}, \quad 1 \leq k \leq n .
$$

## Generalized coeffective cohomologies

If $\left(M^{2 n}, \omega\right)$ is of finite type, for degree $n-k+1$ we define a new finite-dimensional space (using a long exact sequence in cohomology)

## Definition

$$
\hat{H}^{n-k+1}(M)=\frac{H_{(k)}^{n-k+1}(M)}{\frac{H^{n+k}\left(L^{k}\left(\Omega^{k}(M)\right)\right)}{H^{n-k}(M)}} \cdot \operatorname{dim} \hat{H}^{n-k+1}(M)=\hat{c}_{n-k+1} .
$$

- $b_{n-k+1}-b_{n+k+1} \leq \hat{c}_{n-k+1} \leq b_{n-k+1}$ (HLC and exact $\Rightarrow=$ )

Generalized coeffective cohomology

$$
\hat{H}^{n-k+1}, H_{(k)}^{n-k+2}, \ldots, H_{(k)}^{2 n}, \quad 1 \leq k \leq n .
$$

- $\chi^{(k)}(M)=(-1)^{n-k+1} \hat{c}_{n-k+1}+\sum_{i=n-k+2}^{2 n}(-1)^{i} c_{i}^{(k)}$


## Generalized coeffective cohomologies

If $\left(M^{2 n}, \omega\right)$ is of finite type, for degree $n-k+1$ we define a new finite-dimensional space (using a long exact sequence in cohomology)

## Definition

$$
\hat{H}^{n-k+1}(M)=\frac{H_{(k)}^{n-k+1}(M)}{\frac{H^{n+k}\left(L^{k}\left(\Omega^{k}(M)\right)\right)}{H^{n-k}(M)}} \cdot \operatorname{dim} \hat{H}^{n-k+1}(M)=\hat{c}_{n-k+1} .
$$

- $b_{n-k+1}-b_{n+k+1} \leq \hat{c}_{n-k+1} \leq b_{n-k+1}$ (HLC and exact $\Rightarrow=$ )

Generalized coeffective cohomology

$$
\hat{H}^{n-k+1}, H_{(k)}^{n-k+2}, \ldots, H_{(k)}^{2 n}, \quad 1 \leq k \leq n .
$$

- $\chi^{(k)}(M)=(-1)^{n-k+1} \hat{c}_{n-k+1}+\sum_{i=n-k+2}^{2 n}(-1)^{i} c_{i}^{(k)}=\sum_{i=n-k+1}^{n+k}(-1)^{i} b_{i}$


## Generalized coeffective cohomologies

If $\left(M^{2 n}, \omega\right)$ is of finite type, for degree $n-k+1$ we define a new finite-dimensional space (using a long exact sequence in cohomology)

## Definition

$$
\hat{H}^{n-k+1}(M)=\frac{H_{(k)}^{n-k+1}(M)}{\frac{H^{n+k}\left(L_{k}^{k}\left(\Omega^{k}(M)\right)\right)}{H^{n-k}(M)}} \cdot \operatorname{dim} \hat{H}^{n-k+1}(M)=\hat{c}_{n-k+1} .
$$

- $b_{n-k+1}-b_{n+k+1} \leq \hat{c}_{n-k+1} \leq b_{n-k+1}$ (HLC and exact $\Rightarrow=$ )

Generalized coeffective cohomology

$$
\hat{H}^{n-k+1}, H_{(k)}^{n-k+2}, \ldots, H_{(k)}^{2 n}, \quad 1 \leq k \leq n .
$$

- $\chi^{(k)}(M)=(-1)^{n-k+1} \hat{c}_{n-k+1}+\sum_{i=n-k+2}^{2 n}(-1)^{i} c_{i}^{(k)}=\sum_{i=n-k+1}^{n+k}(-1)^{i} b_{i}$ topological invariant.


## Relations between coeffective and harmonic COHOMOLOGIES

## Theorem

Let $\left(M^{2 n}, \omega\right)$ be a symplectic manifold of finite type. The following relation holds for every $k=1, \ldots, n$ :

$$
h_{n-k+1}-h_{n+k+1}=\hat{c}_{n-k+1} .
$$

## Relations between coeffective and harmonic COHOMOLOGIES

## Theorem

Let $\left(M^{2 n}, \omega\right)$ be a symplectic manifold of finite type. The following relation holds for every $k=1, \ldots, n$ :

$$
h_{n-k+1}-h_{n+k+1}=\hat{c}_{n-k+1} .
$$



No relation for $h_{n+1}$.

## Extensions of the generalized coeffective COMPLEXES I

The coeffective complexes are not elliptic in degree $n-k+1$ (that is the reason for which $H_{(k)}^{n-k+1}$ can be infinite dimensional).

## Extensions of the generalized coeffective COMPLEXES I

The coeffective complexes are not elliptic in degree $n-k+1$ (that is the reason for which $H_{(k)}^{n-k+1}$ can be infinite dimensional).
Idea: Construct an elliptic extension of the coeffective complexes. ([Eastwood 12] for $k=1$.)

## Extensions of the generalized coeffective COMPLEXES I

The coeffective complexes are not elliptic in degree $n-k+1$ (that is the reason for which $H_{(k)}^{n-k+1}$ can be infinite dimensional).
Idea: Construct an elliptic extension of the coeffective complexes.
([Eastwood 12] for $k=1$.)

$$
\begin{aligned}
& 0 \longrightarrow \Omega^{0} \xrightarrow{d} \cdots \xrightarrow{d} \Omega^{2 k-1} \stackrel{\text { d }}{\longrightarrow} \check{\Omega}_{(k)}^{2 k} \xrightarrow{\check{d}} \cdots \xrightarrow{\text { ă }} \check{\Omega}_{(k)}^{n+k-2} \xrightarrow{\stackrel{a}{\longrightarrow}} \check{\Omega}_{(k)}^{n+k-1} \\
& 0 \leftarrow \Omega^{2 n} \stackrel{d}{\leftarrow} \cdots \stackrel{d}{\leftarrow} \Omega^{2 n-2 k+1} \stackrel{d}{\leftarrow} \mathfrak{C}_{(k)}^{2 n-2 k} \stackrel{d}{\leftarrow} \cdots \stackrel{d}{\leftarrow} \mathfrak{C}_{(k)}^{n-k+2} \stackrel{d}{\leftarrow} \mathfrak{C}_{(k)}^{n-k+1}
\end{aligned}
$$

where $\check{\Omega}_{(k)}^{q}(M)=\frac{\Omega^{q}(M)}{L_{\omega}^{k}\left(\Omega^{q-2 k}(M)\right)}, \check{d}$ is induced by $d$, and $D$ is second order operator.

## Extensions of the generalized coeffective COMPLEXES II

Cohomology groups: $\check{H}_{(k)}^{q}(M)$, for $q=0, \ldots, 2 n+2 k-1$.

## Extensions of the generalized coeffective COMPLEXES II

Cohomology groups: $\check{H}_{(k)}^{q}(M)$, for $q=0, \ldots, 2 n+2 k-1$.

$$
\underbrace{\check{H}_{(k)}^{0}, \ldots, \check{H}_{(k)}^{2 k-2}}_{=H q}, \check{H}_{(k)}^{2 k-1}, \ldots, \check{H}_{(k)}^{n+k}, \underbrace{\check{H}_{(k)}^{n+k+1}, \ldots, \check{H}_{(k)}^{2 n+2 k-1}}_{=H_{(k)}^{q-2 k+1}}
$$

## Extensions of the generalized coeffective COMPLEXES II

Cohomology groups: $\check{H}_{(k)}^{q}(M)$, for $q=0, \ldots, 2 n+2 k-1$.

$$
\underbrace{\check{H}_{(k)}^{0}, \ldots, \check{H}_{(k)}^{2 k-2}}_{=H a}, \check{H}_{(k)}^{2 k-1}, \ldots, \check{H}_{(k)}^{n+k}, \underbrace{\check{H}_{(k)}^{n+k+1}, \ldots, \check{H}_{(k)}^{2 n+2 k-1}}_{=H_{(k)}^{q-2 k+1}}
$$

- If $\left(M^{2 n}, \omega\right)$ is of finite type, $\check{c}_{q}^{(k)}(M)=\operatorname{dim} \check{H}_{(k)}^{q}(M)$ finite $\forall q$.


## Extensions of the generalized coeffective COMPLEXES II

Cohomology groups: $\check{H}_{(k)}^{q}(M)$, for $q=0, \ldots, 2 n+2 k-1$.

$$
\underbrace{\check{H}_{(k)}^{0}, \ldots, \check{H}_{(k)}^{2 k-2}}_{=H a}, \check{H}_{(k)}^{2 k-1}, \ldots, \check{H}_{(k)}^{n+k}, \underbrace{\check{H}_{(k)}^{n+k+1}, \ldots, \check{H}_{(k)}^{2 n+2 k-1}}_{=H_{(k)}^{q-2 k+1}}
$$

- If $\left(M^{2 n}, \omega\right)$ is of finite type, $\check{c}_{q}^{(k)}(M)=\operatorname{dim} \check{H}_{(k)}^{q}(M)$ finite $\forall q$.

$$
b_{q-2 k+1}-b_{q+1} \leq \check{c}_{q}^{(k)} \leq b_{q-2 k+1}+b_{q}
$$

## Extensions of the generalized coeffective COMPLEXES II

Cohomology groups: $\check{H}_{(k)}^{q}(M)$, for $q=0, \ldots, 2 n+2 k-1$.

$$
\underbrace{\check{H}_{(k)}^{0}, \ldots, \check{H}_{(k)}^{2 k-2}}_{=H^{q}}, \check{H}_{(k)}^{2 k-1}, \ldots, \check{H}_{(k)}^{n+k}, \underbrace{\check{H}_{(k)}^{n+k+1}, \ldots, \check{H}_{(k)}^{2 n+2 k-1}}_{=H_{(k)}^{q-2 k+1}}
$$

- If $\left(M^{2 n}, \omega\right)$ is of finite type, $\check{c}_{q}^{(k)}(M)=\operatorname{dim} \check{H}_{(k)}^{q}(M)$ finite $\forall q$.

$$
b_{q-2 k+1}-b_{q+1} \leq \check{c}_{q}^{(k)} \leq b_{q-2 k+1}+b_{q}
$$

- $\mathrm{HLC} \Longrightarrow b_{q-2 k+1}-b_{q+1}=\check{c}_{q}^{(k)}$.
- $\omega$ exact $\Longrightarrow b_{q-2 k+1}+b_{q}=\check{c}_{q}^{(k)}$.


## Relations between coeffective and primitive COHOMOLOGIES

These last cohomology groups allow us to recover all the primitive cohomology groups [Tseng-Yau 12] via the filtered cohomology groups [Tsai-Tseng-Yau 14]:

## Relations between coeffective and primitive COHOMOLOGIES

These last cohomology groups allow us to recover all the primitive cohomology groups [Tseng-Yau 12] via the filtered cohomology groups [Tsai-Tseng-Yau 14]:

$$
\begin{aligned}
& P H_{\partial_{+}}^{q}(M) \cong F^{0} H_{+}^{q}(M) \cong \check{H}_{(1)}^{q}(M), \quad 0 \leq q \leq n-1 ; \\
& P H_{\partial-}^{q}(M) \cong F^{0} H_{-}^{q}(M) \cong \check{H}_{(1)}^{2 n-q+1}(M) \cong H_{(1)}^{2 n-q}(M), \quad 0 \leq q \leq n-1 ; \\
& P H_{d d^{n}}^{n-k+1}(M) \cong F^{k-1} H_{+}^{n+k-1}(M) \cong \check{H}_{(k)}^{n+-1}(M), \quad 1 \leq k \leq n ; \\
& P H_{d+d^{\wedge}}^{n-k+1}(M) \cong F^{k-1} H_{-}^{n+k-1}(M) \cong \check{H}_{(k)}^{n+k}(M), \quad 1 \leq k \leq n .
\end{aligned}
$$

## Relations between coeffective and primitive COHOMOLOGIES

These last cohomology groups allow us to recover all the primitive cohomology groups [Tseng-Yau 12] via the filtered cohomology groups [Tsai-Tseng-Yau 14]:

$$
\begin{aligned}
& P H_{\partial_{+}}^{q}(M) \cong F^{0} H_{+}^{q}(M) \cong \check{H}_{(1)}^{q}(M), \quad 0 \leq q \leq n-1 ; \\
& P H_{\partial-}^{q}(M) \cong F^{0} H_{-}^{q}(M) \cong \check{H}_{(1)}^{2 n-q+1}(M) \cong H_{(1)}^{2 n-q}(M), \quad 0 \leq q \leq n-1 ; \\
& P H_{d d^{n}}^{n-k+1}(M) \cong F^{k-1} H_{+}^{n+k-1}(M) \cong \check{H}_{(k)}^{n+k-1}(M), \quad 1 \leq k \leq n ; \\
& P H_{d+d^{n}}^{n-k+1}(M) \cong F^{k-1} H_{-}^{n+k-1}(M) \cong \check{H}_{(k)}^{n+k}(M), \quad 1 \leq k \leq n .
\end{aligned}
$$

In fact, the following isomorphisms hold:
$F^{k-1} H_{-}^{n+k-s-1}(M) \cong H_{(k)}^{n-k+s+1}(M) \cong \check{H}_{(k)}^{n+k+s}(M), \quad 1 \leq s \leq n+k-1$.

## Relations between coeffective and primitive COHOMOLOGIES

These last cohomology groups allow us to recover all the primitive cohomology groups [Tseng-Yau 12] via the filtered cohomology groups [Tsai-Tseng-Yau 14]:

$$
\begin{aligned}
& P H_{\partial_{+}}^{q}(M) \cong F^{0} H_{+}^{q}(M) \cong \check{H}_{(1)}^{q}(M), \quad 0 \leq q \leq n-1 ; \\
& P H_{\partial-}^{q}(M) \cong F^{0} H_{-}^{q}(M) \cong \check{H}_{(1)}^{2 n-q+1}(M) \cong H_{(1)}^{2 n-q}(M), \quad 0 \leq q \leq n-1 ; \\
& P H_{d d^{n}}^{n-k+1}(M) \cong F^{k-1} H_{+}^{n+k-1}(M) \cong \check{H}_{(k)}^{n+k-1}(M), \quad 1 \leq k \leq n ; \\
& P H_{d+d^{n}}^{n-k+1}(M) \cong F^{k-1} H_{-}^{n+k-1}(M) \cong \check{H}_{(k)}^{n+k}(M), \quad 1 \leq k \leq n .
\end{aligned}
$$

In fact, the following isomorphisms hold:

$$
F^{k-1} H_{-}^{n+k-s-1}(M) \cong H_{(k)}^{n-k+s+1}(M) \cong \check{H}_{(k)}^{n+k+s}(M), \quad 1 \leq s \leq n+k-1 .
$$

$$
\check{H}_{(k)}^{n+k+s}(M) \cong \check{H}_{(k)}^{n+k-s-1}(M) \text { for } s=0, \ldots, n+k-1 .
$$

## More relations between cohomologies

Let $\left(M^{2 n}, \omega\right)$ be symplectic of finite type.

$$
\begin{equation*}
0 \leq \check{c}_{n+k}^{(k)}-\hat{c}_{n-k+1} \leq b_{n+k}-h_{n+k} \tag{2}
\end{equation*}
$$

## More relations between cohomologies

Let $\left(M^{2 n}, \omega\right)$ be symplectic of finite type.

$$
\begin{equation*}
0 \leq \check{c}_{n+k}^{(k)}-\hat{c}_{n-k+1} \leq b_{n+k}-h_{n+k} \tag{2}
\end{equation*}
$$

$$
\check{c}_{n+k}^{(k)}-\hat{c}_{n-k+1}=b_{n+k}-h_{n+k} \Longleftrightarrow L^{k}\left(H_{\mathrm{hr}}^{n-k}(M)\right)=L^{k}\left(H^{n-k}(M)\right)
$$

## More relations between cohomologies

Let $\left(M^{2 n}, \omega\right)$ be symplectic of finite type.

$$
\begin{equation*}
0 \leq \check{c}_{n+k}^{(k)}-\hat{c}_{n-k+1} \leq b_{n+k}-h_{n+k} \tag{2}
\end{equation*}
$$

$\check{c}_{n+k}^{(k)}-\hat{c}_{n-k+1}=b_{n+k}-h_{n+k} \Longleftrightarrow L^{k}\left(H_{h r}^{n-k}(M)\right)=L^{k}\left(H^{n-k}(M)\right)$.
Particular cases for equality: $k=n, n-1, n-2 \Longrightarrow$

- $\check{c}_{2 n}^{(n)}=b_{1}+b_{2 n}-h_{2 n}$.
- $\check{c}_{2 n-1}^{(n-1)}=b_{2}+b_{2 n-1}-h_{2 n-1}-h_{2 n}$.
- $\check{c}_{2 n-2}^{(n-2)}=b_{2 n-2}+h_{3}-h_{2 n-2}-h_{2 n-1}$.


## More relations between cohomologies

Let $\left(M^{2 n}, \omega\right)$ be symplectic of finite type.

$$
\begin{equation*}
0 \leq \check{c}_{n+k}^{(k)}-\hat{c}_{n-k+1} \leq b_{n+k}-h_{n+k} \tag{2}
\end{equation*}
$$

$\check{c}_{n+k}^{(k)}-\hat{c}_{n-k+1}=b_{n+k}-h_{n+k} \Longleftrightarrow L^{k}\left(H_{h r}^{n-k}(M)\right)=L^{k}\left(H^{n-k}(M)\right)$.
Particular cases for equality: $k=n, n-1, n-2 \Longrightarrow$

- $\check{c}_{2 n}^{(n)}=b_{1}+b_{2 n}-h_{2 n}$.
- $\check{c}_{2 n-1}^{(n-1)}=b_{2}+b_{2 n-1}-h_{2 n-1}-h_{2 n}$.
- $\check{c}_{2 n-2}^{(n-2)}=b_{2 n-2}+h_{3}-h_{2 n-2}-h_{2 n-1}$.


## Theorem

$\left(M^{2 n}, \omega\right)$ satisfies HLC $\Longleftrightarrow \check{c}_{n+k}^{(k)}=\hat{c}_{n-k+1}$ for $k=1, \ldots, n$.

## Relations for closed symplectic manifolds

 $k$-generalized coeffective cohomologies- $k=1, \ldots, n-1: c_{q}^{(k)}=b_{q}$, for $q=2 n-2 k+1, \ldots, 2 n$.
- $k=n:\left\{\begin{array}{l}c_{q}^{(n)}=b_{q}, \quad q=2, \ldots, 2 n, \\ \hat{c}_{1}=b_{1} .\end{array}\right.$
- $\chi^{(k)}$.


## Relations for closed symplectic manifolds

 $k$-generalized coeffective cohomologies- $k=1, \ldots, n-1: c_{q}^{(k)}=b_{q}$, for $q=2 n-2 k+1, \ldots, 2 n$.
- $k=n:\left\{\begin{array}{l}c_{q}^{(n)}=b_{q}, \quad q=2, \ldots, 2 n, \\ \hat{c}_{1}=b_{1} .\end{array}\right.$
- $\chi^{(k)}$.
filtered cohomologies
$\check{c}_{q}^{(k)}= \begin{cases}\check{c}_{2 n+2 k-q-1}^{(k)}, & \text { if } q=0, \ldots, n+k-1, \\ c_{q-2 k+1}^{(k)}, & \text { if } q=n+k+1, \ldots, 2 n+2 k-1 .\end{cases}$
Explicit descriptions of $\check{c}_{2 n}^{(n)}, \check{c}_{2 n-1}^{(n-1)}, \check{c}_{2 n-2}^{(n-2)}$.


## Relations for closed symplectic manifolds

 $k$-generalized coeffective cohomologies- $k=1, \ldots, n-1: c_{q}^{(k)}=b_{q}$, for $q=2 n-2 k+1, \ldots, 2 n$.
- $k=n \cdot\left\{\begin{array}{l}c_{q}^{(n)}=b_{q}, \quad q=2, \ldots, 2 n,, ~\end{array}\right.$ topological for $k=n, n-1$.
- $\chi^{(k)}$.
filtered cohomologies
$\check{c}_{q}^{(k)}=\left\{\begin{array}{ll}\check{c}_{2 n+2 k-q-1}^{(k)}, & \text { if } q=0, \ldots, n+k-1, \\ c_{q-2 k+1}^{(k)}, & \text { if } q=n+k+1, \ldots, 2 n+2 k-1 .\end{array}\right.$ top for $k=n$.
Explicit descriptions of $\check{c}_{2 n}^{(n)}, \check{c}_{2 n-1}^{(n-1)}, \check{c}_{2 n-2}^{(n-2)}$.


## Relations for closed symplectic manifolds

 $k$-generalized coeffective cohomologies- $k=1, \ldots, n-1: c_{q}^{(k)}=b_{q}$, for $q=2 n-2 k+1, \ldots, 2 n$.
- $k=n:\left\{\begin{array}{l}c_{q}^{(n)}=b_{q}, \quad q=2, \ldots, 2 n,\end{array}\right.$ topological for $k=n, n-1$.
- $\chi^{(k)}$.
filtered cohomologies
$\check{c}_{q}^{(k)}=\left\{\begin{array}{ll}\check{c}_{2 n+2 k-q-1}^{(k)}, & \text { if } q=0, \ldots, n+k-1, \\ c_{q-2 k+1}^{(k)}, & \text { if } q=n+k+1, \ldots, 2 n+2 k-1 .\end{array}\right.$ top for $k=n$.
Explicit descriptions of $\check{c}_{2 n}^{(n)}, \check{c}_{2 n-1}^{(n-1)}, \check{c}_{2 n-2}^{(n-2)}$.
harmonic cohomology
- $h_{i}=b_{i}, i=0,1,2,2 n, \quad h_{2 n-1}$ even.
- $h_{n-k+1}-h_{n+k+1}=\hat{c}_{n-k+1} . \quad h_{n-1}-\left(\check{c}_{n+1}^{(1)}-\hat{c}_{n}\right) \leq h_{n+1} \leq h_{n-1}$.


## FLexibility

An interesting question in the study of the symplectic harmonicity is the flexibility. It was introduced and studied in [IRTU 01] and [Yan 96] motivated by a question posed by Khesin and McDuff:

## Flexibility

An interesting question in the study of the symplectic harmonicity is the flexibility. It was introduced and studied in [IRTU 01] and [Yan 96] motivated by a question posed by Khesin and McDuff:

Question: On which compact manifolds $M$ does there exist a family $\omega_{t}$ of symplectic forms such that the dimension of $H_{\mathrm{hr}}^{q}\left(M, \omega_{t}\right)$ varies?

## FLexibility

An interesting question in the study of the symplectic harmonicity is the flexibility. It was introduced and studied in [IRTU 01] and [Yan 96] motivated by a question posed by Khesin and McDuff:

Question: On which compact manifolds $M$ does there exist a family $\omega_{t}$ of symplectic forms such that the dimension of $H_{h r}^{q}\left(M, \omega_{t}\right)$ varies?

## Definition

A manifold $M^{2 n}$ is h -flexible if $M$ possesses a continuous symplectic family $\omega_{t}, t \in[a, b]$ s.t. $h_{q}\left(M, \omega_{a}\right) \neq h_{q}\left(M, \omega_{b}\right)$ for some $q$.

## Flexibility

An interesting question in the study of the symplectic harmonicity is the flexibility. It was introduced and studied in [IRTU 01] and [Yan 96] motivated by a question posed by Khesin and McDuff:

Question: On which compact manifolds $M$ does there exist a family $\omega_{t}$ of symplectic forms such that the dimension of $H_{h r}^{q}\left(M, \omega_{t}\right)$ varies?

## Definition

A manifold $M^{2 n}$ is h -flexible if $M$ possesses a continuous symplectic family $\omega_{t}, t \in[a, b]$ s.t. $h_{q}\left(M, \omega_{a}\right) \neq h_{q}\left(M, \omega_{b}\right)$ for some $q$.

- [Yan 96] studied the case of closed 4-manifolds:
- 4-dimensional nilmanifolds (compact quotients of nilpotent Lie groups) are not $\mathbf{h}$-flexible.
- There exist 4-dimensional h-flexible manifolds.


## FLEXIBILITY

An interesting question in the study of the symplectic harmonicity is the flexibility. It was introduced and studied in [IRTU 01] and [Yan 96] motivated by a question posed by Khesin and McDuff:

Question: On which compact manifolds $M$ does there exist a family $\omega_{t}$ of symplectic forms such that the dimension of $H_{h r}^{q}\left(M, \omega_{t}\right)$ varies?

## Definition

A manifold $M^{2 n}$ is h -flexible if $M$ possesses a continuous symplectic family $\omega_{t}, t \in[a, b]$ s.t. $h_{q}\left(M, \omega_{a}\right) \neq h_{q}\left(M, \omega_{b}\right)$ for some $q$.

- [Yan 96] studied the case of closed 4-manifolds:
- 4-dimensional nilmanifolds (compact quotients of nilpotent Lie groups) are not $\mathbf{h}$-flexible.
- There exist 4-dimensional h-flexible manifolds.
- [IRTU 01]: Some 6-dimensional nilmanifolds are h-flexible.


## COHOMOLOGICAL FLEXIBILITIES

## We can define other notions of flexibility:

## COHOMOLOGICAL FLEXIBILITIES

We can define other notions of flexibility:

## Definition

A closed smooth manifold $M^{2 n}$ is said to be
(1) c-flexible if $M$ possesses a continuous symplectic family $\omega_{t}$, $t \in[a, b]$ such that, for some $1 \leq k \leq n$

$$
\left\{\begin{array}{l}
\hat{c}_{n-k+1}\left(M, \omega_{a}\right) \neq \hat{c}_{n-k+1}\left(M, \omega_{b}\right), \quad \text { or } \\
c_{q}^{(k)}\left(M, \omega_{a}\right) \neq c_{q}^{(k)}\left(M, \omega_{b}\right), \text { for some } n-k+2 \leq q \leq 2 n .
\end{array}\right.
$$

(2) f-flexible if $M$ possesses a continuous symplectic family $\omega_{t}$, $t \in[a, b]$ such that $\check{c}_{q}^{(k)}\left(M, \omega_{a}\right) \neq \check{c}_{q}^{(k)}\left(M, \omega_{b}\right)$ for some $1 \leq k \leq n$ and $0 \leq q \leq 2 n+2 k-1$.

## COHOMOLOGICAL FLEXIBILITIES

We can define other notions of flexibility:

## Definition

A closed smooth manifold $M^{2 n}$ is said to be
(1) c-flexible if $M$ possesses a continuous symplectic family $\omega_{t}$, $t \in[a, b]$ such that, for some $1 \leq k \leq n$

$$
\left\{\begin{array}{l}
\hat{c}_{n-k+1}\left(M, \omega_{a}\right) \neq \hat{c}_{n-k+1}\left(M, \omega_{b}\right), \quad \text { or } \\
c_{q}^{(k)}\left(M, \omega_{a}\right) \neq c_{q}^{(k)}\left(M, \omega_{b}\right), \text { for some } n-k+2 \leq q \leq 2 n .
\end{array}\right.
$$

(2) f-flexible if $M$ possesses a continuous symplectic family $\omega_{t}$, $t \in[a, b]$ such that $\check{c}_{q}^{(k)}\left(M, \omega_{a}\right) \neq \check{c}_{q}^{(k)}\left(M, \omega_{b}\right)$ for some $1 \leq k \leq n$ and $0 \leq q \leq 2 n+2 k-1$.

These new notions of flexibility give us a simpler way to provide examples of $\mathbf{h}$-flexible manifolds.

## CLOSED 4-DIMENSIONAL SYMPLECTIC MANIFOLDS

Let $\left(M^{4}, \omega\right)$ be a closed symplectic manifold.
Generalized coeffective cohomologies are topological.

## CLOSED 4-DIMENSIONAL SYMPLECTIC MANIFOLDS

Let $\left(M^{4}, \omega\right)$ be a closed symplectic manifold.
Generalized coeffective cohomologies are topological.
Filtered cohomologies ( $k=2$ is topological)
$k=1: \check{c}_{0}^{(1)}, \check{c}_{1}^{(1)}, \check{c}_{2}^{(1)} \mid \check{c}_{3}^{(1)}, \underbrace{\check{c}_{4}^{(1)}}_{=c_{3}^{(1)}}, \underbrace{\check{c}_{5}^{(1)}}_{=c_{4}^{(1)}}$, where $\check{c}_{3}^{(1)}=b_{1}+b_{2}-h_{3}-1$

## CLOSED 4-DIMENSIONAL SYMPLECTIC MANIFOLDS

Let $\left(M^{4}, \omega\right)$ be a closed symplectic manifold.
Generalized coeffective cohomologies are topological.
Filtered cohomologies ( $k=2$ is topological)
$k=1: \check{c}_{0}^{(1)}, \check{c}_{1}^{(1)}, \check{c}_{2}^{(1)} \mid \check{c}_{3}^{(1)}, \underbrace{\check{c}_{4}^{(1)}}_{=c_{3}^{(1)}}, \underbrace{\check{c}_{5}^{(1)}}_{=c_{4}^{(1)}}$, where $\check{c}_{3}^{(1)}=b_{1}+b_{2}-h_{3}-1$
Harmonic cohomology: $\underbrace{h_{0}}_{=1}, \underbrace{h_{1}}_{=b_{1}}, \underbrace{h_{2}}_{=b_{2}}, \underbrace{h_{3}}_{\text {even }}, \underbrace{h_{4}}_{=1}$.

## CLOSED 4-DIMENSIONAL SYMPLECTIC MANIFOLDS

Let $\left(M^{4}, \omega\right)$ be a closed symplectic manifold.
Generalized coeffective cohomologies are topological.
Filtered cohomologies ( $k=2$ is topological)
$k=1: \check{c}_{0}^{(1)}, \check{c}_{1}^{(1)}, \check{c}_{2}^{(1)} \mid \check{c}_{3}^{(1)}, \underbrace{\check{c}_{4}^{(1)}}_{=c_{3}^{(1)}}, \underbrace{\check{c}_{5}^{(1)}}_{=c_{4}^{(1)}}$, where $\check{c}_{3}^{(1)}=b_{1}+b_{2}-h_{3}-1$
Harmonic cohomology: $\underbrace{h_{0}}_{=1}, \underbrace{h_{1}}_{=b_{1}}, \underbrace{h_{2}}_{=b_{2}}, \underbrace{h_{3}}_{\text {even }}, \underbrace{h_{4}}_{=1}$.

- $M$ is never c-flexible.
- $M$ is $f$-flexible $\Longleftrightarrow M$ is $\mathbf{h}$-flexible. In particular, $\exists M^{4} \mathbf{f}$-flexible.
- If $b_{1}(M) \leq 1$, then $M$ is not $\mathbf{f}$-flexible.
- If $M$ is completely solvable solvmanifold, it is not $\mathbf{c}$-flexible, $\mathbf{f}$-flexible or $\mathbf{h}$-flexible.


## Closed 6-DIMENSIONAL SYMPLECTIC MANIFOLDS

Generalized coeffective cohomologies
$k=1$ :

$$
\hat{c}_{3}, c_{4}^{(1)}, \underbrace{c_{5}^{(1)}}_{=b_{5}}, \underbrace{c_{6}^{(1)}}_{=b_{6}}
$$

where

$$
\hat{c}_{3}=c_{4}^{(1)}+1-b_{1}-b_{2}+b_{3}
$$

$k=2$ and $k=3$ are topological.

## Closed 6-dimensional symplectic manifolds

Generalized coeffective cohomologies
$k=1$ :

$$
\hat{c}_{3}, c_{4}^{(1)}, \underbrace{c_{5}^{(1)}}_{=b_{5}}, \underbrace{c_{6}^{(1)}}_{=b_{6}}
$$

where

$$
\hat{c}_{3}=c_{4}^{(1)}+1-b_{1}-b_{2}+b_{3}
$$

$k=2$ and $k=3$ are topological.
Harmonic cohomology

$$
\underbrace{h_{0}}_{=1}, \underbrace{h_{1}}_{=b_{1}}, \underbrace{h_{2}}_{=b_{2}}, h_{3}, h_{4}, \underbrace{h_{5}}_{\text {even }}, \underbrace{h_{6}}_{=1},
$$

where

$$
\hat{c}_{3}=h_{3}-h_{5}
$$

## Closed 6-dimensional symplectic manifolds

Filtered cohomologies ( $k=3$ is topological)
$k=1$ :

$$
\check{c}_{0}^{(1)}, \check{c}_{1}^{(1)}, \check{c}_{2}^{(1)}, \check{c}_{3}^{(1)} \mid \check{c}_{4}^{(1)}, \underbrace{\check{c}_{5}^{(1)}}_{=c_{4}^{(1)}}, \underbrace{\check{c}_{6}^{(1)}}_{=b_{5}}, \underbrace{\check{c}_{7}^{(1)}}_{=b_{6}},
$$

where $\check{c}_{4}^{(1)}=\hat{c}_{3}-h_{4}+b_{2}, \quad \check{c}_{5}^{(1)}=c_{4}^{(1)}$
$k=2$ :

$$
\check{c}_{0}^{(2)}, \check{c}_{1}^{(2)}, \check{c}_{2}^{(2)}, \check{c}_{3}^{(2)}, \check{c}_{4}^{(2)} \mid \check{c}_{5}^{(2)}, \underbrace{\check{c}_{6}^{(2)}}_{=b_{3}}, \underbrace{\check{c}_{7}^{(2)}}_{=b_{4}}, \underbrace{\check{c}_{8}^{(2)}}_{=b_{5}}, \underbrace{\check{c}_{9}^{(2)}}_{=b_{6}},
$$

where $\check{c}_{5}^{(2)}=b_{1}+b_{2}-h_{5}-1$
All the dimensions are determined by Betti numbers and $\hat{c}_{3}, h_{4}$ and $h_{5}$.

## FLEXIBILITY IN DIMENSION 6

Relations:

$$
\begin{aligned}
\hat{c}_{3} & =c_{4}^{(1)}+1-b_{1}-b_{2}+b_{3}, \\
\hat{c}_{3} & =h_{3}-h_{5}, \\
\check{c}_{4}^{(1)} & =\hat{c}_{3}-h_{4}+b_{2}, \\
\check{c}_{5}^{(1)} & =c_{4}^{(1)}, \\
\check{c}_{5}^{(2)} & =b_{1}+b_{2}-h_{5}-1 .
\end{aligned}
$$

Results:
(1) $M$ is c-flexible $\Longrightarrow$
(2) $M$ is not c-flexible $\Longrightarrow$

## FLEXIBILITY IN DIMENSION 6

Relations:

$$
\begin{aligned}
\hat{c}_{3} & =c_{4}^{(1)}+1-b_{1}-b_{2}+b_{3} \\
\hat{c}_{3} & =h_{3}-h_{5}, \\
\check{c}_{4}^{(1)} & =\hat{c}_{3}-h_{4}+b_{2}, \\
\check{c}_{5}^{(1)} & =c_{4}^{(1)} \\
\check{c}_{5}^{(2)} & =b_{1}+b_{2}-h_{5}-1 .
\end{aligned}
$$

Results:
(1) $M$ is $\mathbf{c}$-flexible $\Longrightarrow M$ is $\mathbf{f}$-flexible and $\mathbf{h}$-flexible.
(2) $M$ is not c-flexible $\Longrightarrow$

## FLEXIBILITY IN DIMENSION 6

Relations:

$$
\begin{aligned}
\hat{c}_{3} & =c_{4}^{(1)}+1-b_{1}-b_{2}+b_{3} \\
\hat{c}_{3} & =h_{3}-h_{5}, \\
\check{c}_{4}^{(1)} & =\hat{c}_{3}-h_{4}+b_{2}, \\
\check{c}_{5}^{(1)} & =c_{4}^{(1)} \\
\check{c}_{5}^{(2)} & =b_{1}+b_{2}-h_{5}-1 .
\end{aligned}
$$

Results:
(1) $M$ is $\mathbf{c}$-flexible $\Longrightarrow M$ is $\mathbf{f}$-flexible and $\mathbf{h}$-flexible.
(2) $M$ is not $\mathbf{c}$-flexible $\Longrightarrow M$ is $\mathbf{f}$-flexible if and only if it is $\mathbf{h}$-flexible.

## FLEXIBILITY IN DIMENSION 6

Relations:

$$
\begin{aligned}
\hat{c}_{3} & =c_{4}^{(1)}+1-b_{1}-b_{2}+b_{3} \\
\hat{c}_{3} & =h_{3}-h_{5} \\
\check{c}_{4}^{(1)} & =\hat{c}_{3}-h_{4}+b_{2} \\
\check{c}_{5}^{(1)} & =c_{4}^{(1)} \\
\check{c}_{5}^{(2)} & =b_{1}+b_{2}-h_{5}-1 .
\end{aligned}
$$

Results:
(1) $M$ is $\mathbf{c}$-flexible $\Longrightarrow M$ is $\mathbf{f}$-flexible and $\mathbf{h}$-flexible.
(2) $M$ is not $\mathbf{c}$-flexible $\Longrightarrow M$ is $\mathbf{f}$-flexible if and only if it is $\mathbf{h}$-flexible.

Examples of $\mathbf{h}$-flexible nilmanifolds in dimension 6 can be found in [IRTU 01].
We classify the 6-dimensional c-flexible nilmanifolds.

## FLEXIBILITY IN DIMENSION $\geq 8$

Let $\left(M^{2 n}, \omega\right)$ be a closed symplectic manifold.
(1) $M$ is $\mathbf{c}$-flexible $\Longrightarrow M$ is $\mathbf{f}$-flexible or $\mathbf{h}$-flexible.
(2) $\exists M$ f-flexible for any dimension $2 n$.

Example in dimension 8: a solvmanifold that is $\mathbf{c}$-flexible, $\mathbf{f}$-flexible and h-flexible.

