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PRINCIPAL IDEAS

1 There exist several cohomologies on symplectic manifolds: harmonic,
primitive, filtered and coeffective. All of them appear independently in
the literature.

Objective 1 Relate all these cohomologies by defining the generalized
coeffective cohomology.

2 Harmonic, primitive and filtered cohomologies are defined in terms of
d∧, ∂+, ∂− and therefore these cohomologies are difficult to compute.

Objective 2 Provide a coeffective version of these cohomologies so
that computations are easier.

3 The dimension of all these cohomology groups can vary when the
symplectic form does (notion of flexibility).

Objective 3 Study harmonic and filtered flexibility in terms of coeffective
flexibility.
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SYMPLECTIC HARMONICITY I

(M2n, ω) symplectic manifold.

Ω∗(M) the space of differential forms on M.

[Brylinski 88] α ∈ Ω∗(M) is symplectically harmonic if dα = 0 = d∧α.
(d∧ is the adjoint of d with respect to ∗ω.)

Notation: Ω∗hr(M).

Problem: there are non-zero exact symplectically harmonic forms
(important difference w.r.t. the usual Hodge Theory).

Symplectically harmonic cohomology: Hq
hr(M) =

Ωq
hr(M)

(Ωq
hr(M) ∩ im d)

.

Hq
hr(M)

?
= Hq(M), q = 0, . . . ,2n.

Yes⇐⇒ HLC (Lk : Hn−k ∼=−→ Hn+k , k = 1, . . . ,n).
[Mathieu 95], [Yan 96]
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SYMPLECTIC HARMONICITY II

Theorem [Ibáñez-Rudyak-Tralle-Ugarte 01], [Yamada 02]

Hq
hr(M) = Pq(M, ω) + L(Hq−2

hr (M)), q = 0, . . . ,n,

Hq
hr(M) = Im {Lq−n : H2n−q

hr (M)→ Hq(M)), q = n + 1, . . . ,2n,

where

Pq(M) = {[α] ∈ Hq(M) |Ln−q+1[α] = 0} ⊂ Hq
hr(M).

If (M2n, ω) is of finite type: hq(M) = dim Hq
hr(M) is finite.

hi = bi for i = 0,1,2.

If (M2n, ω) is closed: h2n = b2n, h2n−1 is even.
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PRIMITIVE COHOMOLOGIES [Tseng-Yau I & II, 12]

New finite dimensional cohomologies on symplectic manifolds that
contain unique harmonic representative within each class:

[Tseng-Yau I, 12] Idea: Bott-Chern and Aeppli in the symplectic
setting.

H∗d+d∧ =
Ker (d + d∧)

Im dd∧
, H∗dd∧ =

Ker dd∧

Im d + Im d∧
.

Primitive cohomologies: PHq
d+d∧ and PHq

dd∧ , for q ≤ n.

[Tseng-Yau II, 12] Idea: Dolbeault in symplectic case:
d = ∂+ + ω ∧ ∂−

H∗∂+
and H∗∂− .

Primitive cohomologies: PHq
∂+

and PHq
∂−
, for q ≤ n − 1.
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FILTERED COHOMOLOGIES [Tsai-Tseng-Yau III, 14]

{PH∗d+d∧ , PH∗dd∧ , PH∗∂+
, PH∗∂−} are primitive cohomologies.

Idea: There exist non-primitive ones?

Filtered cohomologies: F pHq
+, F pHq

−, for q = 0, . . . ,n + p, and
p = 0, . . . ,n, that extend the primitive ones.

Relations between cohomologies for closed symplectic manifolds:

PHq
∂+

= PHq
∂−
, q ≤ n − 1.

PHq
dd∧ = PHq

d+d∧ , q ≤ n.

F pHn+p
+ = PHn−p

dd∧ .

F pHn+p
− = PHn−p

d+d∧ .

F pHq
+ = F pHq

−.
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COEFFECTIVE COHOMOLOGY I

Definition [Bouché 90]

α ∈ Ω∗(M) is coeffective if Lω(α) := α ∧ ω = 0. Notation: Cq
(1)(M).

d(Cq
(1)(M)) ⊂ Cq+1

(1) (M).

Coeffective cohomology: Hq
(1)(M) =

Ker {d : Cq
(1)(M)→ Cq+1

(1) (M)}

Im {d : Cq−1
(1) (M)→ Cq

(1)(M)}
.

Lω : Ωq → Ωq+2 injective ∀q ≤ n− 1 =⇒ Hq
(1)(M) = 0, ∀q ≤ n − 1.

Hq
(1)(M) = Hq(M), q = 2n.
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COEFFECTIVE COHOMOLOGY II

If (M2n, ω) is of finite type:

H0
(1)(M), . . . ,Hn−1

(1) (M)︸ ︷︷ ︸
= 0

, Hn
(1)(M), Hn+1

(1) (M), . . . ,H2n
(1)(M)︸ ︷︷ ︸

are finite dimensional

.

Notation: c(1)
q (M) = dim Hq

(1)(M), q ≥ n + 1.

Problem: Hn
(1)(M) can be infinite dimensional

[Fernández-Ibáñez-de León 98] For q ≥ n + 1:

bq − bq+2c(1)
q bq + bq+1.

HLC =⇒ bq − bq+2 = c(1)
q .

ω exact =⇒ bq + bq+1 = c(1)
q .
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k -COEFFECTIVE COHOMOLOGIES I

α ∈ Ω∗(M) is k -coeffective if Lk
ω(α) := α ∧ ωk = 0. Notation: Cq

(k)(M).

k -Coeffective cohomology: Hq
(k)(M) =

Ker {d : Cq
(k)(M)→ Cq+1

(k) (M)}

Im {d : Cq−1
(k) (M)→ Cq

(k)(M)}
.

If (M2n, ω) is of finite type:

H0
(k), . . . ,H

n−k
(k)︸ ︷︷ ︸

= 0

, Hn−k+1
(k) , Hn−k+2

(k) , . . . ,H2n−2k+1
(k) , H2n−2k+2

(k) , . . . ,H2n
(k)︸ ︷︷ ︸

= Hq︸ ︷︷ ︸
are finite dimensional

.

Problem: Hn−k+1
(k) (M) can be infinite dimensional
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k -COEFFECTIVE COHOMOLOGIES II

Notation: c(k)
q (M) = dim Hq

(k)(M), q ≥ n − k + 2.

bq − bq+2k ≤ c(k)
q ≤ bq + bq+2k−1. (1)

HLC =⇒ bq − bq+2k = c(k)
q .

ω exact =⇒ bq + bq+2k−1 = c(k)
q .

Objective
Define a new group for degree n − k + 1 such that:

It is finite dimensional.
Its dimension satisfies similar inequalities to (1)

R. Villacampa (C.U.D – I.U.M.A.) Cohomologies on Symplectic Manifolds Parma, November 28th, 2014 10 / 24



k -COEFFECTIVE COHOMOLOGIES II

Notation: c(k)
q (M) = dim Hq

(k)(M), q ≥ n − k + 2.

bq − bq+2k ≤ c(k)
q ≤ bq + bq+2k−1. (1)

HLC =⇒ bq − bq+2k = c(k)
q .

ω exact =⇒ bq + bq+2k−1 = c(k)
q .

Objective
Define a new group for degree n − k + 1 such that:

It is finite dimensional.
Its dimension satisfies similar inequalities to (1)

R. Villacampa (C.U.D – I.U.M.A.) Cohomologies on Symplectic Manifolds Parma, November 28th, 2014 10 / 24



k -COEFFECTIVE COHOMOLOGIES II

Notation: c(k)
q (M) = dim Hq

(k)(M), q ≥ n − k + 2.

bq − bq+2k ≤ c(k)
q ≤ bq + bq+2k−1. (1)

HLC =⇒ bq − bq+2k = c(k)
q .

ω exact =⇒ bq + bq+2k−1 = c(k)
q .

Objective
Define a new group for degree n − k + 1 such that:

It is finite dimensional.
Its dimension satisfies similar inequalities to (1)

R. Villacampa (C.U.D – I.U.M.A.) Cohomologies on Symplectic Manifolds Parma, November 28th, 2014 10 / 24



GENERALIZED COEFFECTIVE COHOMOLOGIES

If (M2n, ω) is of finite type, for degree n − k + 1 we define a new
finite-dimensional space (using a long exact sequence in cohomology)

Definition

Ĥn−k+1(M) =
Hn−k+1

(k) (M)

Hn+k (Lk
ω(Ωk (M)))

Hn−k (M)

. dim Ĥn−k+1(M) = ĉn−k+1.

bn−k+1 − bn+k+1 ≤ ĉn−k+1 ≤ bn−k+1 (HLC and exact⇒=)

Generalized coeffective cohomology

Ĥn−k+1, Hn−k+2
(k) , . . . ,H2n

(k), 1 ≤ k ≤ n.

= (−1)n−k+1ĉn−k+1 +
2n∑

i=n−k+2

(−1)ic(k)
i
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topological invariant.
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RELATIONS BETWEEN COEFFECTIVE AND HARMONIC

COHOMOLOGIES

Theorem
Let (M2n, ω) be a symplectic manifold of finite type. The following
relation holds for every k = 1, . . . ,n:

hn−k+1 − hn+k+1 = ĉn−k+1.

h0, h1,

ĉn−1

h2, . . . ,

ĉ1

hn, hn+1, hn+2, . . . , h2n

No relation for hn+1.
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EXTENSIONS OF THE GENERALIZED COEFFECTIVE

COMPLEXES I

The coeffective complexes are not elliptic in degree n − k + 1 (that is
the reason for which Hn−k+1

(k) can be infinite dimensional).

Idea: Construct an elliptic extension of the coeffective complexes.
([Eastwood 12] for k = 1.)

0 // Ω0 //d // · · · d // Ω2k−1 ď // Ω̌2k
(k)

ď // · · · ď // Ω̌n+k−2
(k)

ď // Ω̌n+k−1
(k)

D��
0 Ω2noo · · ·doo Ω2n−2k+1doo C2n−2k

(k)
doo · · ·doo Cn−k+2

(k)
doo Cn−k+1

(k)
doo

where Ω̌q
(k)(M) =

Ωq(M)

Lk
ω(Ωq−2k (M))

, ď is induced by d , and D is second

order operator.
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, ď is induced by d , and D is second

order operator.

R. Villacampa (C.U.D – I.U.M.A.) Cohomologies on Symplectic Manifolds Parma, November 28th, 2014 13 / 24



EXTENSIONS OF THE GENERALIZED COEFFECTIVE

COMPLEXES II

Cohomology groups: Ȟq
(k)(M), for q = 0, . . . ,2n + 2k − 1.

Ȟ0
(k), . . . , Ȟ

2k−2
(k)︸ ︷︷ ︸

= Hq

, Ȟ2k−1
(k) , . . . , Ȟn+k

(k) , Ȟn+k+1
(k) , . . . , Ȟ2n+2k−1

(k)︸ ︷︷ ︸
= Hq−2k+1

(k)

.

If (M2n, ω) is of finite type, č(k)
q (M) = dim Ȟq

(k)(M) finite ∀q.

bq−2k+1 − bq+1 ≤ č(k)
q ≤ bq−2k+1 + bq.

I HLC =⇒ bq−2k+1 − bq+1 = č(k)
q .

I ω exact =⇒ bq−2k+1 + bq = č(k)
q .
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(k)(M) finite ∀q.

bq−2k+1 − bq+1 ≤ č(k)
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q (M) = dim Ȟq
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q ≤ bq−2k+1 + bq.

I HLC =⇒ bq−2k+1 − bq+1 = č(k)
q .

I ω exact =⇒ bq−2k+1 + bq = č(k)
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RELATIONS BETWEEN COEFFECTIVE AND PRIMITIVE

COHOMOLOGIES

These last cohomology groups allow us to recover all the primitive
cohomology groups [Tseng-Yau 12] via the filtered cohomology groups
[Tsai-Tseng-Yau 14]:

PHq
∂+

(M) ∼= F 0Hq
+(M) ∼= Ȟq

(1)(M), 0 ≤ q ≤ n − 1;

PHq
∂−

(M) ∼= F 0Hq
−(M) ∼= Ȟ2n−q+1

(1) (M) ∼= H2n−q
(1) (M), 0 ≤ q ≤ n − 1;

PHn−k+1
ddΛ (M) ∼= F k−1Hn+k−1

+ (M) ∼= Ȟn+k−1
(k) (M), 1 ≤ k ≤ n;

PHn−k+1
d+dΛ (M) ∼= F k−1Hn+k−1

− (M) ∼= Ȟn+k
(k) (M), 1 ≤ k ≤ n.

In fact, the following isomorphisms hold:

F k−1Hn+k−s−1
− (M) ∼= Hn−k+s+1

(k) (M) ∼= Ȟn+k+s
(k) (M), 1 ≤ s ≤ n + k −1.

Ȟn+k+s
(k) (M) ∼= Ȟn+k−s−1

(k) (M) for s = 0, . . . ,n + k − 1.
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(k) (M) for s = 0, . . . ,n + k − 1.

R. Villacampa (C.U.D – I.U.M.A.) Cohomologies on Symplectic Manifolds Parma, November 28th, 2014 15 / 24



MORE RELATIONS BETWEEN COHOMOLOGIES

Let (M2n, ω) be symplectic of finite type.

0 ≤ č(k)
n+k − ĉn−k+1 ≤ bn+k − hn+k (2)

č(k)
n+k − ĉn−k+1 = bn+k − hn+k ⇐⇒ Lk (Hn−k

hr (M)) = Lk (Hn−k (M)).

Particular cases for equality: k = n, n − 1, n − 2 =⇒
č(n)

2n = b1 + b2n − h2n.

č(n−1)
2n−1 = b2 + b2n−1 − h2n−1 − h2n.

č(n−2)
2n−2 = b2n−2 + h3 − h2n−2 − h2n−1.

Theorem

(M2n, ω) satisfies HLC⇐⇒ č(k)
n+k = ĉn−k+1 for k = 1, . . . ,n.
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RELATIONS FOR CLOSED SYMPLECTIC MANIFOLDS

k -generalized coeffective cohomologies

k = 1, . . . ,n − 1 : c(k)
q = bq, for q = 2n − 2k + 1, . . . ,2n.

k = n :

 c(n)
q = bq, q = 2, . . . ,2n,

ĉ1 = b1.

topological for k = n,n − 1.

χ(k).

filtered cohomologies

č(k)
q =

 č(k)
2n+2k−q−1, if q = 0, . . . ,n + k − 1,

c(k)
q−2k+1, if q = n + k + 1, . . . ,2n + 2k − 1.

top for k = n.

Explicit descriptions of č(n)
2n , č(n−1)

2n−1 , č(n−2)
2n−2 .

harmonic cohomology
hi = bi , i = 0,1,2,2n, h2n−1 even.

hn−k+1 − hn+k+1 = ĉn−k+1. hn−1 − (č(1)
n+1 − ĉn) ≤ hn+1 ≤ hn−1.
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FLEXIBILITY

An interesting question in the study of the symplectic harmonicity is the
flexibility. It was introduced and studied in [IRTU 01] and [Yan 96]
motivated by a question posed by Khesin and McDuff:

Question: On which compact manifolds M does there exist a family ωt
of symplectic forms such that the dimension of Hq

hr(M, ωt ) varies?

Definition
A manifold M2n is h-flexible if M possesses a continuous symplectic
family ωt , t ∈ [a,b] s.t. hq(M, ωa) 6= hq(M, ωb) for some q.

[Yan 96] studied the case of closed 4-manifolds:
I 4-dimensional nilmanifolds (compact quotients of nilpotent Lie

groups) are not h-flexible.
I There exist 4-dimensional h-flexible manifolds.

[IRTU 01]: Some 6-dimensional nilmanifolds are h-flexible.
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COHOMOLOGICAL FLEXIBILITIES

We can define other notions of flexibility:

Definition
A closed smooth manifold M2n is said to be

1 c-flexible if M possesses a continuous symplectic family ωt ,
t ∈ [a,b] such that, for some 1 ≤ k ≤ n{

ĉn−k+1(M, ωa) 6= ĉn−k+1(M, ωb), or

c(k)
q (M, ωa) 6= c(k)

q (M, ωb), for some n − k + 2 ≤ q ≤ 2n.

2 f-flexible if M possesses a continuous symplectic family ωt ,
t ∈ [a,b] such that č(k)

q (M, ωa) 6= č(k)
q (M, ωb) for some 1 ≤ k ≤ n

and 0 ≤ q ≤ 2n + 2k − 1.

These new notions of flexibility give us a simpler way to provide
examples of h-flexible manifolds.
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CLOSED 4-DIMENSIONAL SYMPLECTIC MANIFOLDS

Let (M4, ω) be a closed symplectic manifold.

Generalized coeffective cohomologies are topological.

Filtered cohomologies (k = 2 is topological)

k = 1: č(1)
0 , č(1)

1 , č(1)
2

∣∣∣ č(1)
3 , č(1)

4︸︷︷︸
=c(1)

3

, č(1)
5︸︷︷︸

=c(1)
4

, where č(1)
3 = b1 + b2 − h3 − 1

Harmonic cohomology: h0︸︷︷︸
=1

, h1︸︷︷︸
=b1

, h2︸︷︷︸
=b2

, h3︸︷︷︸
even

, h4︸︷︷︸
=1

.

M is never c-flexible.
M is f-flexible⇐⇒ M is h-flexible. In particular, ∃ M4 f-flexible.
If b1(M) ≤ 1, then M is not f-flexible.
If M is completely solvable solvmanifold, it is not c-flexible,
f-flexible or h-flexible.
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CLOSED 6-DIMENSIONAL SYMPLECTIC MANIFOLDS

Generalized coeffective cohomologies

k = 1:
ĉ3, c(1)

4 , c(1)
5︸︷︷︸

=b5

, c(1)
6︸︷︷︸

=b6

,

where
ĉ3 = c(1)

4 + 1− b1 − b2 + b3

k = 2 and k = 3 are topological.

Harmonic cohomology

h0︸︷︷︸
=1

, h1︸︷︷︸
=b1

, h2︸︷︷︸
=b2

, h3, h4, h5︸︷︷︸
even

, h6︸︷︷︸
=1

,

where
ĉ3 = h3 − h5

R. Villacampa (C.U.D – I.U.M.A.) Cohomologies on Symplectic Manifolds Parma, November 28th, 2014 21 / 24



CLOSED 6-DIMENSIONAL SYMPLECTIC MANIFOLDS
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CLOSED 6-DIMENSIONAL SYMPLECTIC MANIFOLDS

Filtered cohomologies (k = 3 is topological)

k = 1:
č(1)

0 , č(1)
1 , č(1)

2 , č(1)
3

∣∣∣ č(1)
4 , č(1)

5︸︷︷︸
=c(1)

4

, č(1)
6︸︷︷︸

=b5

, č(1)
7︸︷︷︸

=b6

,

where č(1)
4 = ĉ3 − h4 + b2, č(1)

5 = c(1)
4

k = 2:

č(2)
0 , č(2)

1 , č(2)
2 , č(2)

3 , č(2)
4

∣∣∣ č(2)
5 , č(2)

6︸︷︷︸
=b3

, č(2)
7︸︷︷︸

=b4

, č(2)
8︸︷︷︸

=b5

, č(2)
9︸︷︷︸

=b6

,

where č(2)
5 = b1 + b2 − h5 − 1

All the dimensions are determined by Betti numbers and ĉ3, h4 and h5.
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FLEXIBILITY IN DIMENSION 6
Relations:

ĉ3 = c(1)
4 + 1− b1 − b2 + b3,

ĉ3 = h3 − h5,

č(1)
4 = ĉ3 − h4 + b2,

č(1)
5 = c(1)

4 ,

č(2)
5 = b1 + b2 − h5 − 1.

Results:

1 M is c-flexible =⇒

M is f-flexible and h-flexible.

2 M is not c-flexible =⇒

M is f-flexible if and only if it is h-flexible.

Examples of h-flexible nilmanifolds in dimension 6 can be found in
[IRTU 01].
We classify the 6-dimensional c-flexible nilmanifolds.
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FLEXIBILITY IN DIMENSION ≥ 8

Let (M2n, ω) be a closed symplectic manifold.

1 M is c-flexible =⇒ M is f-flexible or h-flexible.
2 ∃ M f-flexible for any dimension 2n.

Example in dimension 8: a solvmanifold that is c-flexible, f-flexible and
h-flexible.
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