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In this article we prove that each integral cycle T in an oriented Riemannian
manifold M can be approximated in flat norm by an integral cycle in the same
homology class which is a smooth submanifold Σ of nearly the same area, up to a
singular set of codimension 5. Moreover, if the homology class τ is representable
by a smooth submanifold, then Σ can be chosen free of singularities.

Contents

1 Introduction 2
1.1 Motivation and historical background . . . . . . . . . . . . . . . . . 2
1.2 Consequences of the main theorem . . . . . . . . . . . . . . . . . . . 4
1.3 Overview of the proof . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Notation and preliminary results 8
2.1 Theory of integral currents . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Homotopy theory and cobordism . . . . . . . . . . . . . . . . . . . . 10

3 Triangulations, skeleta, neighborhoods, and maps 15
3.1 Suitable neighborhoods of skeleta . . . . . . . . . . . . . . . . . . . 15
3.2 Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4 Tools from geometric measure theory 20
4.1 Proof of Proposition 4.1: first approximation . . . . . . . . . . . . . . 22
4.2 Proof of Proposition 4.1: second approximation . . . . . . . . . . . . 25
4.3 Proof of Proposition 4.3 . . . . . . . . . . . . . . . . . . . . . . . . . 29

5 Proof of the main theorem 31

6 Optimality of the main theorem 37

†Deceased on February, 5th 1997.

1

http://www.ams.org/mathscinet/search/mscdoc.html?code=\@secclass 


2 Frederick Almgren† , William Browder, Gianmarco Caldini and Camillo De Lellis

A Useful lemmas on triangulations and simplicial decompositions 41

B Cohomology operations and characteristic classes 45

C List of symbols 52

Bibliography 53

1 Introduction

1.1 Motivation and historical background

Integral currents represent one of the most satisfactory analytic and topological for-
mulations of the concept of generalized surfaces, that is m-dimensional submanifolds
in (m + n)-dimensional ambient manifolds having sufficient compactness properties
to allow the application of the direct methods in the calculus of variations. Integral
currents were introduced by Federer and Fleming in their celebrated article [19] to
provide a successful solution to the so-called oriented Plateau problem: the problem
of finding an oriented generalized surface of smallest area spanning a given boundary
or representing a given homology class. One of the main results of [19] is that each
homology class with coefficients in Z can be represented by a cycle of least area. These
existence theorems have been followed over the years by powerful regularity theories
for minimizers, showing that solutions are a posteriori much more regular than one
might expect a priori, see [10, 2, 1, 3, 5, 11, 12, 13, 14, 15].

The natural question of how much smoother integral currents are with respect to
their original definition goes back to the late 1950s and to the origin of the theory
of integral currents with the seminal article of Federer and Fleming, see [17, 19]. In
particular, in [19, page 1, lines 30-31], the authors write: “Integral currents are actually
much smoother than one might expect from the preceding definition”, introducing the
well-known deformation theorem of integral currents and the strong approximation
theorem by means of polyhedral chains with integer coefficients, see [19, Theorems 5.5
and 8.22]. The deformation theorem represents a cornerstone in the theory, showing
that the space of integral currents is the closure with respect to the flat topology of the
space of polyhedral chains with integer coefficients.

A basic question in the theory of integral currents is thus the following.

Question 1 “How closely can one approximate an integral current T representing a
given homology class τ by a smooth submanifold?”
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It may happen, in full generality, that integral currents are singular due to topological
obstructions: in [33], Thom provides an example of a homology class of dimension
7 in a manifold of dimension 14 which is not realizable by means of a submanifold,
cfr. Example 6.1. Moreover, it turns out that for each dimension greater than 7 there
exist (in some manifold of arbitrarily large dimension) nonrealizable integral homology
classes, see [33, Théorème III.9]; therefore, any integral current representing such a
class must have singularities. Nevertheless, these obstructions motivate the following
very natural question.

Question 2 “Suppose that a given homology class τ is realizable by a smooth
submanifold, is it always possible to approximate any integral current T representing τ
(and hence, a fortiori, any T which is area-minimizing) by smooth submanifolds?”

The following theorem, which is the focus of this article, provides answers to both
questions.

Theorem 1.1 (Optimal smooth approximation) Let M be a connected smooth closed
oriented Riemannian manifold of dimension m + n. Let ε > 0, τ be a fixed nonzero
element of the m-dimensional integral homology group Hm(M,Z), and T be an
integral cycle representing τ . Then, there is a smooth triangulation K of M and an
oriented m-dimensional smooth submanifold Σ of M\Km−5 (where Km−5 denotes
(m − 5)-skeleton of K) with the following properties.

(1) The m-dimensional volume of Σ does not exceed the mass of T by more than ε,
that is Hm(Σ) ≤ M(T) + ε.

(2) The current JΣK is an integral cycle homologous to T and there is an integral
(m + 1)-dimensional current S in M such that ∂S = JΣK − T and M(S) < ε.

(3) If τ admits a smooth representative, then Σ can be chosen to be a smooth
submanifold of M.

Remark 1.2 The codimension 5 construction in Theorem 1.1 is optimal, as shown by
the innately singular homology class discovered by Thom, see Theorem 6.3.

In 1988 Almgren posed these basic questions formally, announcing Theorem 1.1 together
with the second named author few years later, see [6, page 20, line 9] and [4, page 44,
line 21]; nevertheless, the program was never completed and a proof of the announced
result never appeared. In [6], among other things, the authors hint at the strategy of
using Thom’s criterion in the context of homotopy classes of mappings from M (less a
skeleton) to the Thom complex T(γ̃n); building upon these fruitful unpublished ideas
this article provides a complete proof of Theorem 1.1.
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1.2 Consequences of the main theorem

We outline here several consequences of Theorem 1.1. Our underlying assumption for
all the theorems of this paper is the following1.

Assumption 1.3 n,m ∈ N \ {0} are arbitrary positive integers, M is a connected
smooth oriented closed Riemannian manifold of dimension m + n, τ is a nonzero
element of the m-dimensional integral homology group Hm(M,Z) and T is an integral
current (hence a cycle) representing τ .

When dealing with smooth triangulations of M we will tacitly assume to have fixed
some simplicial complex K together with a piecewise smooth map t : |K| → M. In
order to keep our notation simpler, with a slight abuse we will in fact mostly avoid
referring to the map t and we will use directly K also for the smooth triangulation of
M; thus, a simplex of the triangulation K will mean the t-image of a simplex of |K|.
Kj will denote the j-dimensional skeleton of K , i.e. the union of all j-dimensional
simplices of K . Moreover, the letter Σ will be reserved to denote either smooth oriented
m-dimensional closed embedded submanifolds of M or smooth oriented m-dimensional
embedded submanifolds of M\Kj (for some integer j) whose topological closure is
contained in Kj .

By Nash’s isometric embedding theorem we consider M as a submanifold of some
Euclidean space RN and, by a classical theorem of Whitney, smooth submanifolds of
RN are smooth retractions of some open neighborhood, see [18, 3.1.19]. Hence smooth
compact submanifolds are Lipschitz neighborhood retracts. For every k = 0, . . . ,m+n,
we denote by Zk(M) the set of k-dimensional integral cycles with support in M and
by Zk,Lip(M) the set of k-dimensional integer Lipschitz cycles with support in M,
that is the set of cycles of the form f#(P) where f : RN → M is a Lipschitz map and P
is an integer polyhedral cycle in RN .

We refer to Section 2 for the relevant definitions.

Definition 1.4 (Smooth representability) Let M, τ and Σ be as in Assumption
1.3. We say that τ is representable by a smooth submanifold (or that τ admits a
smooth representative) if there exists a smooth embedding f : Σ → M such that the
fundamental class of Σ equals τ , that is f∗[Σ] = τ .

1We refer to Section C for a list of notations.
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The first consequence of Theorem 1.1 is the absence of the so-called Lavrentiev gap
phenomenon for the homological Plateau problem2.

Theorem 1.5 (Absence of Lavrentiev gaps) Let M, τ,T and Σ as in Assumption
1.3, and define the following quantities:

MT := min{M(T) : T ∈ Zk(M) ∩ τ},
MP := inf{M(P) : P ∈ Zk,Lip(M) ∩ τ},
MΣ := inf{Vol m(Σ) : JΣK ∈ τ and Σ is smooth in M\Km−5 for some triangulation K},
MReg := inf{Vol m(Σ) : JΣK ∈ τ and Σ is smooth in M} .

Then, MT = MP = MΣ and, moreover, MT = MReg when τ is representable by a
smooth submanifold.

Remark 1.6 Note that any class τ is representable by a smooth submanifold when
n ∈ {1, 2} or when m ∈ {1, 2, 3, 4, 5, 6}, see Lemma 5.2 and Remark 5.3. In these
cases, Theorem 1.1 implies that singularities of integral cycles can be resolved, in the
sense that they can be approximated by smooth submanifolds.

The request that τ is representable by a smooth submanifold can often be expressed
in terms of the vanishing of some suitable obstruction, which is represented by a
cohomology operation; in particular, denoting x the Poincaré dual of τ and by p an
odd prime, a necessary (and, in some particular dimensions, also sufficient) condition
for an integral homology class τ to be representable by a smooth submanifold is that
all St2r(p−1)+1

p x are null, see [33, Théorème II.20]. We recall that, following Thom’s
notation for the Bockstein reduced pth powers reduction mod p, St2r(p−1)+1

p represent
(up to a sign) the following cohomology operations:

St2r(p−1)+1
p = β∗ ◦ Pr

p ◦ θp : H∗(X,Z) → H∗+2r(p−1)+1(X,Z),

where Pr
p is the reduced Steenrod pth power, β∗ : H∗(X,Zp) → H∗+1(X,Z) is the

Bockstein associated to the short exact sequence

0 → Z → Z → Zp → 0

and θp the reduction mod p such that βp = θp◦β∗, with βp : H∗(X,Zp) → H∗+1(X,Zp)
the Bockstein associated to 0 → Zp → Zp2 → Zp → 0.

2The Lavrentiev gap phenomenon holds for a functional in the calculus of variations when
it has different infima depending on whether the infimum is taken over the whole class of
admissible objects or over some smaller class of more regular objects. The first of such examples
was discovered by Lavrentiev in 1927, see [22] and cfr. [9].
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This necessary condition is a consequence of the fact that the cohomology for odd
primes of the oriented Grassmannians is concentrated in dimensions which are multiples
of 4.

As a simple corollary of Theorem 1.1 we further deduce the following approximation
theorem with cycles of prescribed singularities.

Theorem 1.7 (Approximation by cycles with prescribed singular sets) Let M, τ and
T be as in Assumption 1.3. Then there is a sequence of smooth triangulations Kj of M
and a sequence of smooth embedded oriented m-dimensional submanifolds (Σj)j in
M\Km−5

j such that

(a) JΣjK → T in the sense of currents,

(b) limj→∞Hm(Σj) = M(T),

(c) ∂JΣjK = 0 and JΣjK is in the same homology class as T .

In fact conclusion (c) is a simple consequence of the Federer flatness criterion: since
∂JΣjK is a flat current supported in a set which has Hm−1 -zero measure, it must be 0,
see [18, 4.1.20]; therefore it also follows from the convergence to T that JΣjK is in the
same homology class as T for every j sufficiently large.

1.3 Overview of the proof

The main idea of our study is to combine Federer and Fleming’s theory of integral
currents with tools and techniques from cobordism and homotopy theory.

The proof of Theorem 1.1 can be grosso modo descrived as follows. Starting from
an m-dimensional integral cycle T in a nontrivial homology class τ of M, we first
develop a delicate approximation theorem by means of a cycle P′ which is a smooth
submanifold outside of a (small) δ -neighborhood Bδ of the (m − 2)-skeleton of some
triangulation of M, cfr. Proposition 4.1. In particular, a subset of the smooth part of
P′ is a compact smooth submanifold with boundary embedded in a compact manifold
with boundary, which we denote by Ω (ideally we would define Ω as M\ Bδ , but the
latter does not have a smooth boundary: we will get around this technical obstruction
by a standard regularization procedure, cfr. Section 3): this object represents a relative
homology class in Hm(Ω, ∂Ω,Z); this will induce, by Theorem 2.6 a map

F : Ω → T(γ̃n)



Optimal smooth approximation of integral cycles 7

with values in the Thom space of the universal oriented n-plane bundle and such that
the pull-back of the Thom class equals the Poincaré dual of τ , when restricted to Ω.
This is known as the (relative) Thom construction.

Then, denoting by Q the complement of a small neighborhood Uδ of the (m − 5)-
skeleton of the triangulation of M, we note that Q has the homotopy type of an
(n + 4)-dimensional skeleton of M, cfr. Lemma 5.1. Thus, we exploit the n + 4-
equivalence between T(γ̃n) and the Eilenberg-MacLane space K(Z, n), cfr. Lemma
5.2, to prove that the restriction of the Poincaré dual of τ to Q admits a lift

(1) f : Q → T(γ̃n)

pulling back the Thom class to itself. Applying Theorem 2.6 and after some technicalities,
this provides an integral cycle R homologous to τ which is a closed smooth embedded
submanifold with singularities all contained in the (m − 5)-dimensional skeleton Km−5

of M.

Since, by Lemma 5.1, Ω has the homotopy type of an (n+ 1)-dimensional complex, we
observe that homotopy classes of maps defined on Ω and with values in T(γ̃n) are in
one-to-one correspondence with those with values in K(Z, n), cfr. Corollary 2.2. This
allows us to conclude that the smooth part of P′ coincides, up to a homotopy, with the
smooth part of R once restricted to Ω.

The conclusion then follows from a technical geometric measure theory construction,
cfr. Proposition 4.3, saying that if two m-dimensional integral cycles P′ and R agree
outside of a sufficiently small neighborhood of the (m− 2)-skeleton of the triangulation
of M, then we can find a smooth deformation R′ of R which is almost coinciding with
R and with mass close to the mass of P′ . This provides the desired approximation R′ of
Theorem 1.1, satisfying (1) and (2).

Finally, part (3) of Theorem 1.1 is proved following the same lines: under the additional
assumption that τ is representable by a smooth submanifold we immediately obtain a
map

g : M → T(γ̃n)

which pulls-back the Thom class to the Poincaré dual of τ ; the analogous construction
can thus be performed just by replacing the map f in (1) with g.

The rest of the paper is organized as follows. In Section 2 we briefly recall the main
notation in the theory of integral currents and some preliminary results in homotopy
theory and cobordism. In Section 3 we collect some technical preliminary lemmas
about neighborhoods of skeleta and maps associated to them. In Section 4 we will
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prove the two main technical propositions from geometric measure theory: Proposition
4.1 and Proposition 4.3; an appendix with some elementary facts about triangulations
and simplicial decompositions is listed in Section A. Section 5 is dedicated to the proof
of Theorem 1.1 and Section 6 shows the optimality of the construction. We add at the
end another brief appendix, see Section B, recalling some introductory results about
cohomology operations and characteristic classes, useful in the proof of Lemma 5.2.
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2 Notation and preliminary results

In this section we recall the main definitions and relevant notation.

2.1 Theory of integral currents

We briefly recall the main notions of Federer and Fleming’s theory of integral currents,
cfr. also [19, 18, 26]. The space of k-dimensional De Rham currents in RN (i.e.
continuous linear functionals on the space Dk(RN) of smooth and compactly supported
differential k-forms in RN ) is denoted by Dk(RN). The boundary of T ∈ Dk(RN) is
defined enforcing Stokes’ theorem, namely ∂T(φ) = T(dφ), and if ∂T = 0 then T is
called a cycle. The mass of T is denoted by M(T) and is defined as the supremum
of T(ω) over all forms ω with |ω(x)| ≤ 1 for all x ∈ RN , where | · | denotes an
appropriately defined norm called comass. The support of T , denoted spt(T), is the
intersection of all closed sets C in RN such that T(ω) = 0 whenever ω ≡ 0 on C . For
every compact Lipschitz neighborhood retract M ⊂ RN , we will denote by Dk(M) the
set

Dk(M) := {T ∈ Dk(RN) | spt(T) ⊂ M}.

We recall that a current T ∈ Dk(RN) is integer rectifiable (and we write T ∈ Rk(RN))
if we can identify T with a triple (E, τ, θ), where E ⊂ K is a k-rectifiable set, τ (x) is a
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unit k-vector spanning the tangent space TxE at Hk -a.e. x and θ ∈ L1(Hk E,Z) is
an integer-valued multiplicity. The identification means that the action of T can be
expressed by

(2) T(ω) =
∫

E
⟨ω(x), τ (x)⟩ θ(x) dHk(x), for every ω ∈ Dk(RN).

If T is as in (2), we denote it by T = JE, τ, θK. We will often use the shorthand notation
T = θJEK if θ is constant and the orientation is clear from the context. We denote
by Ik(RN) the subgroup of k-dimensional integral currents, that is the set of currents
T ∈ Rk(RN) with ∂T ∈ Rk−1(RN). If T = JE, τ, θK ∈ Rk(RN) and B ⊂ RN is a Borel
set, we denote the restriction of T to B by setting T B := JE ∩ B, τ, θK. The set of
integer rectifiable (respectively integral) k-currents with support in a compact Lipschitz
neighborhood retract M is denoted by Rk(M) (respectively Ik(M)). We denote by
Zk(M) the space of integral cycles with support in M , i.e. the space of integral currents
T ∈ Ik(M) with ∂T = 0.

We recall that the (integral) flat norm F(T) of an integral current T ∈ Ik(M) is defined
by:

(3) F(T) := min{M(R) +M(S) | T = R + ∂S, R ∈ Ik(M), S ∈ Ik+1(M)}.

Given a smooth, proper map f : RN → RN′
and a k-current T in RN , the push-forward

of T according to the map f is the k-current f♯T in RN′
defined by

(4) f♯T(ω) := T(f ∗ω), for every ω ∈ Dk(RN′
),

where f ∗ω denotes the pullback of ω through f . If T is such that M(T),M(∂T) <∞
and f : RN → RN′

a Lipschitz map such that f|spt(T) is proper, then the pushforward of
T via f can be defined as follows. Let φ ∈ C∞

c (RN) be a standard mollifier, denote
φτ (x) := τ−nφ(τ−1x), for τ > 0, and let fτ := f ∗ φτ be the smoothing of f . The
pushforward of T via f is defined as

f♯T(ω) := lim
τ→0

fτ♯T(ω), for every ω ∈ Dk(RN′
).

A k-dimensional polyhedral3 current (or polyhedral chain) is a current P of the form

(5) P :=
d∑

i=1

θiJσiK,

3A more appropriate term might be “integral polyhedral”, allowing “polyhedral” to have also
real coefficients. In this paper the coefficients will always be integers.
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where θi ∈ N, σi are k-dimensional simplices in RN , oriented by (constant) k-vectors
ni and JσiK = Jσi, ni, 1K is the multiplicity-one current naturally associated to σi .
The subgroup of k-dimensional integer polyhedral currents in RN will be denoted by
Pk(RN), while Zk,Lip(M) will be used for the set of k-dimensional integer Lipschitz
cycles with support in M , that is the set of cycles of the form f♯(P) where f : RN → M
is a Lipschitz map and P ∈ Pk(RN).

2.2 Homotopy theory and cobordism

We briefly recall the main topological notions that will be used later, we refer also to
[27, 30, 33, 23].

The mapping cylinder Mf of a continuous map f : X → Y is the quotient space formed
from the disjoint union (X × [0, 1]) ⊔ Y by identifying, for each x ∈ X , the point (x, 1)
with f (x) ∈ Y ; it contains X × {0} as a subspace and has Y as a deformation retract.

For n ≥ 1 and an abelian group π , the Eilenberg-MacLane space K(π, n) is a space
with the homotopy type of a CW -compex such that πi(K(π, n)) vanishes for i ̸= n and
πn(K(π, n)) ≃ π , where πi(X) denotes the i-th homotopy group of the topological space
X . Recall that the Hopf homotopy classification theorem states that for a (connected)
CW -complex X , an abelian group π and for every n ∈ N \ {0} there is a natural
isomorphism

T : [X,K(π, n)] → Hn(X, π),

where [X,K(π, n)] represents the set of (unbasedpointed) homotopy classes of con-
tinuous maps from X to K(π, n) and Hn(X, π) is the n-th cohomology group of X
with coefficients in π . The isomorphism has the form T([f ]) = f ∗(ι), for a certain
ι ∈ Hn(K(π, n), π) called the fundamental class; K(π, n) is therefore the classifying
space of n-dimensional cohomology with coefficients in π . This determines K(π, n)
up to homotopy equivalence: that is, the homotopy type of K(π, n) is determined by π
and n, and the identity map of π determines, up to homotopy, a canonical homotopy
equivalence between any two copies of K(π, n).

We recall that a continuous map f : X → Y between path-connected4 CW -complexes
is called an n-equivalence for n ≥ 1 if the induced homomorphism

f∗ : πi(X) → πi(Y)

is an isomorphism for 0 < i < n and an epimorphism for i = n.

4We restrict to the case X and Y are path-connected since we only need this in the sequel.
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We also recall that f : X → Y is an n-equivalence if and only if the inclusion
i : X → Mf is an n-equivalence. From the long exact sequence of relative homotopy
groups, it follows that i is an n-equivalence if and only if the relative homotopy group
πi(Mf ,X) = 0 vanishes for all i ≤ n. In order to keep our notation lighter, with a slight
abuse we will sometimes write πi(Y,X) = 0, meaning πi(Mf ,X) = 0 when the map f
is clear from the context.

We recall the following characterization of n-equivalence and the subsequent corollary.

Proposition 2.1 ([27, Theorem 7.6.22]) If f : X → Y is an n-equivalence, then for
every relative CW -complex (K,L) with K of dimension at most n, and every map
a : L → X and b : K → Y with b|L = f ◦ a, there exists a map c : K → X with c|L = a
and f ◦ c homotopic to b relative to L .

Corollary 2.2 ([27, Corollary 7.6.23]) If K is a CW -complex and f : X → Y is an
n-equivalence, then the induced homomorphism

f∗ : [K,X] → [K,Y]

is a bijection if dim K < n and a surjection if dim K = n.

We recall a classical result due to Whitehead, which allows to deduce homotopic
properties of a space from its cohomological ones, cfr. also [33, Theorem II.6].

Theorem 2.3 Let f : X → Y a map between two simply connected CW -complexes
X,Y . If for any group coefficient Zp the induced homomorphism

f ∗ : Hi(Y,Zp) → Hi(X,Zp)

is an isomorphism when i < k and a monomorphism when i = k , then the relative
homotopy groups πi(Y,X) = 0, for i ≤ k .

Proof Consider the following exact sequence in cohomology:

Hr(Mf )
f ∗−→ Hr(X) → Hr+1(Mf ,X) → Hr+1(Mf ) → Hr+1(X).

The assumptions on f are equivalent to Hi(Mf ,X,Zp) = 0 for every prime p and
i ≤ k . By duality on the group coefficients Zp, we can write Hi(Mf ,X,Zp) = 0 for
i ≤ k which is equivalent, by the universal coefficient formula, to Hi(Mf ,X,Z) = 0 for
i ≤ k . Since X and Y are simply connected, by the relative Hurewicz theorem, cfr. [27,
Theorem 7.5.4], we conclude that πi(Mf ,X) = 0 for i ≤ k , namely our claim (recall
that by πi(Y,X) we actually mean πi(Mf ,X)).
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Let G̃n(Rn+k) be the oriented Grassmannian manifold, that is the space of oriented
n-dimensional subspaces in Rn+k . The natural embedding Rn ↪→ Rn+1 , induces an
embedding G̃n(Rn) ↪→ G̃n(Rn+1). Thus, forming the union over increasing dimensions
we obtain an infinite CW -complex named the infinite oriented Grassmannian

G̃n := G̃n(R∞) =
⋃

k

G̃n(Rn+k),

as the set of all n-dimensional linear subspaces of R∞ , endowed with the direct limit
topology. We denote as γ̃n the universal oriented n-plane bundle, that is the canonical
vector bundle over the base space G̃n

Ẽ π−→ G̃n

with total space Ẽ consisting of pairs (ℓ, v) ∈ G̃n(R∞) × R∞ such that v ∈ ℓ,
topologized as a subset of the cartesian product, and with projection π : Ẽ → G̃n such
that π(ℓ, v) = ℓ.

Recall that any oriented n-plane5 bundle ξ over a paracompact base B admits a bundle
map ξ → γ̃n and that any two bundle maps f , g : ξ → γ̃n from an oriented n-plane
bundle ξ to γ̃n are bundle homotopic, meaning that there exists a one-parameter
family of bundle maps ht : ξ → γ̃n , with t ∈ [0, 1] and h0 = f and h1 = g such
that h is continuous as a function of both variables, cfr. [23, Theorems 5.6, 5.7].
Hence, any oriented n-plane bundle ξ over a paracompact space B determines, up to
orientation-preserving isomorphism, a unique homotopy class of maps f ξ : B → G̃n .
Since the classifying space G̃n for oriented n-plane vector bundles is the classifying
space associated to the rotations group SO(n), we will denote it as usual by BSO(n). In
fact, in almost all our considerations we just need to consider G̃n(Rn+k) for a sufficiently
large k and at all effects treat BSO(n) as some fixed compact manifold G̃n(Rn+k) for a
suitably large k .

We recall now the main notions of Thom spaces and Thom’s characterization of
representability of a homology class.

Let ξ be an n-plane bundle with a Euclidean metric and A ⊂ E(ξ) be the subset of
the total space consisting of all vectors v with |v| ≥ 1. Then the identification space
E(ξ)/A is called the Thom space T(ξ) of ξ . Note that T(ξ) has a preferred base point,
denoted by ∞, and the complement T(ξ) \ {∞} consists of all vectors v ∈ E(ξ) with
|v| < 1. We note that if the base space B of ξ is a (finite) CW -complex, then the Thom
space T(ξ) is an (n − 1)-connected (finite) CW -complex.

5That is, all fibers are oriented n-dimensional real vector spaces.



Optimal smooth approximation of integral cycles 13

If ξ is a smooth oriented n-plane bundle, then the base space B of ξ can be smoothly
embedded as the zero-cross section in the total space E(ξ), and hence in the Thom
space T(ξ); moreover we note that the while T(ξ) is not a manifold in general, the
complement of the base point T(ξ) \ {∞} has the structure of a smooth manifold.

Let R be a commutative ring with unity and ξ an n-plane bundle E π−→ B. For a point
b ∈ B, let Sn

b be the one-point compactification of the fiber π−1(b); since Sn
b is the

Thom space of ξ|b , we have a canonical map

ib : Sn
b → T(ξ) .

An R-orientation, or a Thom class, of ξ is defined to be an element u ∈ H̃n(T(ξ),R)
(the reduced n-th cohomology group of T(ξ)) such that, for every point b ∈ B, i∗b(u) is
a generator of (the free R-module) H̃n(Sn

b). We recall now a fundamental theorem, cfr.
[30, Theorem 15.51].

Theorem 2.4 (Thom isomorphism theorem) Let u ∈ H̃n(T(ξ),R) be a Thom class
for an n-plane bundle ξ of the form E π−→ B. Define

Φ : Hi(B,R) → H̃n+i(T(ξ),R)

by the cup product Φ(x) = π∗(x) ⌣ u. Then Φ is an isomorphism for every integer i.

We remark that for any oriented n-plane bundle the Thom class with Z coefficients
exists and it is unique; analogously, for every n-plane bundle there exists a unique
Thom class with Z2 coefficients, cfr. [23, Theorems 9.1, 8.1].

Thom’s celebrated result about realizability of cycles by means of submanifolds can be
stated as follows, cfr. [33, Théorème II.1].

Theorem 2.5 Given M and τ as in Assumption 1.3, a homology class τ ∈ Hm(M,Z)
is representable by a m-dimensional smooth submanifold Σ ⊂ M of codimension n
if and only if there exists a map f : M → T(γ̃n) which pulls back the Thom class6

u ∈ Hn(T(γ̃n),Z) to the Poincaré dual of τ .

By suitably modifying the proof of [33, Théorème II.1], one sees that the natural analog
of Theorem 2.5 holds for compact manifolds with boundary. This is in fact what we will
need in our arguments and we therefore provide a proof for the reader’s convenience.

6Recall that, since R = Z and n ≥ 1, the reduced cohomology group coincides with the
standard cohomology group.
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Theorem 2.6 Let M be a connected smooth oriented compact m + n-dimensional
Riemannian manifold with boundary ∂M and τ a nontrivial relative homology class
τ ∈ Hm(M, ∂M,Z). Then τ is representable7 by a smooth compact embedded
submanifold manifold Σ ⊂ M with ∂Σ = Σ ∩ ∂M if and only if there exists a map
f : M → T(γ̃n) which pulls back the Thom class u ∈ Hn(T(γ̃n),Z) to the relative
Poincaré dual of τ .

Proof Assume that τ ∈ Hm(M, ∂M,Z) is representable by a smooth compact
embedded submanifold Σ ⊂ M with ∂Σ = Σ ∩ ∂M, that is there exists a smooth
embedding h : Σ → M such that the fundamental class [Σ] determined by the
orientation of Σ equals τ. Denote the relative Poincaré dual of τ by x ∈ Hn(M). If
we consider D(M) the double manifold of M, then D(M) is a smooth closed oriented
manifold. In D(M), we consider the double manifold of Σ, which is a smooth closed
oriented embedded submanifold of D(M), whose fundamental class is an absolute
homology class in Hm(D(M)); denote by y ∈ Hn(D(M)) its Poincaré dual. By
applying Thom’s construction of Theorem 2.5, we find a map

F : D(M) → T(γ̃n)

such that F∗(u) = y. Denoting by i : M → D(M) the inclusion map, we consider the
restriction of F to M, so that we obtain a new map f : M → T(γ̃n) such that

f ∗(u) = (F ◦ i)∗(u) = i∗(y) = x.

Conversely, assume that there exists a map f : M → T(γ̃n) such that f ∗(u) = x.
Consider the restriction of f to ∂M and denote it by ∂f . The space T(γ̃n) \ {∞} is
a smooth manifold: hence by [35, Proposition 2.3.4], we can approximate the map
of ∂f by means of a new map g0 agreeing with ∂f on ∂f−1(U(∞)) and which is of
class C∞ on ∂M\ ∂f−1(U(∞)), where U is a small smooth neighborhood of {∞};
if the approximation is close enough, then g0 is homotopic to ∂f . By the standard
density argument, cfr. [35, Theorem 4.5.6], we can approximate g0 by a homotopic
map g1 which is smooth and transverse to the zero section8 of γ̃n . Since ∂M has a
collar neighborhood, by the homotopy extension property there is a map f1 defined
on M, homotopic to f and such that ∂f1 = g1 . By [35, Proposition 2.3.4 (ii)], we
can assume that f1 is smooth and coincides with g1 on ∂M. By [35, Proposition
4.5.7], we obtain a final map f̃ arbitrarily close to f , agreeing with it on f−1(U(∞)),

7With the obvious modifications in Definition 1.4 for M,Σ with boundary and τ a relative
homology class.

8With the usual approximation to the restriction of γ̃n to a sufficiently large compact manifold
G̃n(Rn+k).
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of class C∞ on M \ f−1(U(∞)) and such that both f̃ and ∂ f̃ are transverse to the
zero section, cfr. also [35, Proposition 4.5.10]. By applying the same proof as in [7,
Theorem 8.2], the preimage f̃−1(BSO(n)) is a smooth compact embedded submanifold
Σ ⊂ M of codimension n, with ∂Σ = Σ ∩ ∂M. Hence we can conclude that
x = f ∗(u) = f̃ ∗(u).

Remark 2.7 A direct way to prove the first implication of Theorem 2.6 has been
suggested to us by Jacob Lurie and it is the following. Let M, τ,Σ as above. Choose
an extension of the normal bundle νΣ of Σ to some smooth n-plane bundle ξ : E → U ,
where U is an open neighborhood of Σ: this induces an isomorphism q : νΣ → ξ|Σ ;
choose a connection on ξ . Working locally in each chart and then using a partition of
unity, it is possible to construct a smooth section s of ξ which vanishes on Σ and such
that the covariant derivative of s along Σ induces the isomorphism q. Up to shrinking
the open set U , one can assume that s vanishes exactly on Σ and that it is transverse to
the zero section. Now it is possible to conclude in analogy with Thom’s construction:
choose a bundle map ξ → γ̃n and, after having rescaled s, note that it is possible
to extend the classifying map with domain U and with values in the corresponding
subspace of the total space of γ̃n to a map f : M → T(γ̃n), sending the complement of
U to the 0-cell of T(γ̃n). It follows that x = f ∗(u), where x is the Poincaré dual of τ
and u ∈ Hn(T(γ̃n),Z) the Thom’s class. This argument shows that Thom’s construction
can be performed without any need of a tubular neighborhood theorem.

We refer to Appendix B for a brief discussion about cohomology operations and
characteristic classes, needed in the proof of Lemma 5.2.

3 Triangulations, skeleta, neighborhoods, and maps

3.1 Suitable neighborhoods of skeleta

Having fixed a triangulation K of M and a skeleton Kj , we denote by Bδ(Kj) the usual
metric neighborhoods of the skeleton, namely the sets of points p with dist(p,Kj) < δ .
In many instances we will use these neighborhoods for our considerations. However,
for some important considerations we will in fact need a suitable variant, which will
be denoted by Vδ(Kj) and are defined in the following way. We first fix a (sufficiently
large) constant C0 which will depend on the triangulation K , subdivide the simplices
forming Kj into S0 ∪ . . . ∪ Sj according to their dimension (Si being the collection of



16 Frederick Almgren† , William Browder, Gianmarco Caldini and Camillo De Lellis

simplices of dimension i) and hence set

(6) Vδ(Kj) :=
j⋃

i=0

⋃
σ∈Si

BC−i
0 δ(σ)

where
BC−i

0 δ(σ) = {p : dist(p, σ) < C−i
0 δ} .

The following is an elementary consequence of our definition.

Lemma 3.1 For every triangulation K of M and every j ≤ m+ n− 1 there is a choice
of δ̄ > 0 (sufficiently small) and of C0 sufficiently large such that the following holds.
First of all, M\ Vδ̄(Kj) is a deformation retract of M\Kj .

Moreover, for every point p ∈ ∂Vδ̄(Kj) there is at most one σ in each Si (with 0 ≤ i ≤ j)
such that p ∈ ∂BC−i

0 δ̄(σ). In particular, there is a neighborhood of U of p, an integer
j̄ ∈ {1, . . . , j} and a diffeomorphism ϕ : U → B1 ⊂ Rm+n (the unit ball in Rm+n ) such
that

ϕ(U \ Vδ̄(Kj)) = {(x1, . . . , xm+n) : xi > 0 for 1 ≤ i ≤ j̄} .

Note in particular that the boundary of Vδ̄(Kj) is a Lipschitz submanifold. This is,
however, not suitable for our purposes; we need an appropriate regularization of it
which, given the explicit local description of Lemma 3.1, is a consequence of a standard
regularization procedure.

Lemma 3.2 Let K be a triangulation of M, let δ̄ and C0 be given by Lemma 3.1, and
fix any pair of positive numbers δ′ < δ < δ̄ . Then there is a neighborhood Uδ(Kj) of
Kj with the following properties:

• Vδ(Kj) ⊃ Uδ(Kj) ⊃ Vδ′(Kj);

• The boundary of Uδ(Kj) is smooth;

• M\ Uδ(Kj) is a deformation retract of M\ Vδ′(Kj);

• There is a smooth tubular neighborhood C of ∂Uδ(Kj) in M containing ∂Vδ′(Kj).

3.2 Maps

We will now build some special maps related to the neighborhoods Bδ and Vδ .

Lemma 3.3 Let M be as in Assumption 1.3 and K a triangulation of M. For every
εa > 0 and ηa > 0 there is a positive number δa < ηa with the following property. If
γ ∈]0, 1] is an arbitrary number, then there is a diffeomorphism Φ such that:
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(1) Φ is isotopic to the identity and it coincides with the identity on M\ Bηa(Kk);
(2) Lip(Φ) ≤ 1 + εa ;
(3) For every point p ∈ Bδa(Kk) there is an orthonormal frame e1, . . . , em+n such

that

|dΦp(ei)| ≤ 1 + εa ∀i ∈ {1, . . . , k},(7)

|dΦp(ej)| ≤ γ ∀j ∈ {k + 1, . . . ,m + n} .(8)

Before coming to the proof of the latter lemma, we remark that a simple modification
of the arguments gives the following one, which is in fact much simpler.

Lemma 3.4 Let M be as in Assumption 1.3, K a triangulation, j ∈ {0, . . . ,m+n−1}.
If C0 and δ̄−1 in Lemma 3.1 are chosen sufficiently large, then for every δb > δ′b > 0
there is a Lipschitz map Φ : M → M with the following properties:

• Φ maps Vδ′b(Kj) into Kj ;

• Φ is a smooth diffeomorphism between M\ Φ−1(Kj) and M\Kj ;

• Φ(p) = p for every p ̸∈ Vδb(Kj).

Proof of Lemma 3.3 The proof is by induction over k .

We start with the first step, where k = 0. We enumerate the 0-skeleton as the points
p1, . . . , pN , we let d be the minimum of dist(pi, pj) and r0 a radius which is smaller
than the minimum of the injectivity radii for the exponential maps centered at pi and
whose choice will be specified later. We then set η := min{ηa,

d
4 ,

r0
2 }. We fix δa < η

and µ ≥ 0 (whose choice will be specified later) and let φ : [0,∞[→ [0,∞[ be the
following piecewise linear increasing function:

φ(t) =


µt if 0 ≤ t ≤ 2δa,
η−δa−2µδa
η−3δa

(t − 2δa) + 2µδa if 2δa ≤ t ≤ η − δa,
t if t ≥ η − δa.

Observe that 0 ≤ φ′ ≡ µ on [0, 2δa] while 0 ≤ φ′ ≤ η
η−3δa

everywhere else, and
the latter number can be made arbitrarily close to 1 depending only on the ratio δa

η ,
but independently of µ. We then regularize φ by convolution with a standard smooth
nonnegative kernel, hence getting a smooth diffeomorphism of the real half line, which
we denote by ψ . Its derivative ψ′ will enjoy the same global upper bound and, by
choosing the kernel suitably, we can ensure ψ(t) = µt on the interval [0, δa] and
ψ(t) = t on [η − δa

2 ,∞[. We next define the map Ψµ(x) := ψ(|x|) x
|x| from Rm+n onto
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itself. Notice that Lip(Ψµ) can be made arbitrarily close to 1 choosing the ratio δa
η very

small, while clearly Ψµ(x) = µx in the ball of radius Bδa . We are now ready to define
the map Φ. Φ(p) := p for p ̸∈ M \ Bη(K0). Next Bη(K0) is the disjoint union of
Bη(pi). On each such ball we consider the exponential map exppi

and Φ is defined to be

Φ := exppi
◦Ψµ ◦ exp−1

pi
.

By choosing the radius r0 sufficiently small we can get the Lipschitz constant of the
exponential maps and of their inverses arbitrarily close to 1 on the domains of our
interest. So, if we fix some constant ε̃, after choosing δa

η and r0 sufficiently small, we
can easily achieve

Lip (Φ) ≤ (1 + ε̃)3

and
Lip (Φ|Bδa (K0)) ≤ (1 + ε̃)2µ

In particular we first choose ε̃ so that (1 + ε̃)3 ≤ 1 + εa and we then choose µ so that
(1 + ε̃)2µ ≤ γ . Note that the choice of δa is then independent of γ .

We next wish to tackle the induction step, so we assume that the statement of the
proposition holds for k − 1 in place of k . We then fix εa , ηa , and γ . We apply the
proposition in case k − 1 with the same ηa but with γ0 and ε0 in place of γ and εa

and get the corresponding δa , which we denote by δ0 . The choices of ε0 and γ0 will
be specified later, but we anticipate that ε0 will only depend on εa among all these
parameters. We therefore then have a corresponding map, which we denote by Φk−1 ,
with the property that Lip(Φk−1) ≤ 1 + ε0 , which is the identity outside of Bηa(Kk−1)
and which in turn satisfies all the requirements of the lemma for the other parameters.

Next we consider δa, η , and µ, whose choices will be specified later. For each
k-dimensional face F in the k-dimensional skeleton, we consider

F′ := F \ Bδ0/16(Kk−1)

and we choose η small enough so that the normal neighborhoods Nη(F′) are pairwise
disjoint and all diffeomorphic to F′ × Bm+n−k

η , where Bm+n−k
η denotes the m + n − k

dimensional ball of radius η and centered at 0 in Rm+n−k . We then parametrize Nη(F′)
as (x, y), where x ∈ F′ and y ∈ Bm+n−k

η .

We next introduce a function of two variables defined in the following way. First of all
we define µ̄ : [0,∞[→ [0,∞[ as

µ̄(s) =


1 if s ≤ δ0

4 ,

1 − 2 (1−µ)
δ0

(s − δ0
4 ) if δ0

4 ≤ s ≤ 3δ0
4 ,

µ if s ≥ 3δ0
4 .
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Hence we set

φ(s, t) =


tµ̄(s) if t ≤ 2δa,
η−δa−2µ̄(s)δa

η−3δa
(t − 2δa) + 2µ̄(s)δa if 2δa ≤ t ≤ η − δa,

t if t ≥ η − δa.

Note that ∂tφ ≡ µ if t ≤ 2δa and s ≥ 3δ0
4 while ∂tφ ≡ 1 if t ≥ η− δa or for every t if

s ≤ δ0
4 . On the other hand we have the upper bound∣∣∣∣∂φ∂t

∣∣∣∣ ≤ η

η − 3δa
,

where the right hand side can be made arbitrarily close to 1 by choosing δa
η small.

Likewise we have the upper bound ∣∣∣∣∂φ∂s

∣∣∣∣ ≤ 4η
δ0

and the right hand side can be made arbitrarily small by choosing η
δ0

small.

These two requirements (namely η
η−3δa

being sufficiently close to 1 and 4η
δ0

being
sufficiently close to 0) will only depend on εa , ε0 and the geometry of the triangulation,
while ε0 will only depend on εa and the geometry of the triangulation, so that ultimately
δa will depend in fact only on εa , ηa , M and K .

With a similar regularization procedure as the one outlined above, we can smooth φ to
a function ψ . Then we also suitably smooth the distance function p 7→ dist(p,Kk−1) in
Bδ0(Kk−1)\B δ0

8
(Kk−1) to a function d . We then define a function Φk : Nη(F′) → Nη(F′)

by setting

Φk(x, y) :=
(

x, ψ(d(x, 0), |y|) y
|y|

)
.

Being the Nη(F′) pairwise disjoint, this define a function on the union of them. Finally,
since the function is the identity at the boundary of this domain, we can extend it to all
of M by being the identity. We then claim that the function Φ := Φk−1 ◦ Φk in fact
satisfies all the requirements upon choosing our parameters correctly. The bound on the
Lipschitz constant simply follows by multiplying the bounds of the Lipschitz constants
of the two maps and choosing the parameters correctly. The fact that the map is equal to
the identity outside of Bηa(Kk) follows from choosing η ≤ ηa . It remains to check the
third claim. We will check that the claim holds at every p such that dist(p,Kk) ≤ δa

but dist(p,Kk−1) ≥ 3 δ0
4 and at every p such that dist(p,Kk−1) ≤ 3 δ0

4 . The union of
the two sets clearly contains Bδa(Kk), and this completes the proof. First of all observe
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that if p is in the first set, then by construction there are m + n − k orthonormal vectors
ek+1, . . . , em+n with the property that

|dΦk|p(ei)| ≤ 2µ .

On the other hand because of the Lipschitz bound on Φk−1 we immediately conclude
that

|dΦ|p(ei)| ≤ 2(1 + ε0)µ

and thus choosing µ appropriately we can guarantee 2(1 + ε0)µ ≤ γ . Completing the
ei ’s to an orthonormal basis we get the desired estimate on the other vectors simply
using the global Lipschitz estimate on Φ.

Consider now a p ∈ B3δ0/4(Kk−1). By construction q = Φk−1(p) belongs to Bδ0(Kk−1).
There are therefore m + n + 1 − k orthonormal vectors vk, . . . , vm+n with the property
that

|dΦk−1|q(vi)| ≤ γ0 .

Consider the vector space V spanned by these vectors. Then we have the estimate

|dΦk−1(v)| ≤
√

m + n + 1 − k γ0|v|

for every such v. Because Φ is a diffeomorphism, there is an m + n − k-dimensional
subspace W of TpM which dΦ|p maps onto V . If we choose an orthonormal base
ek+1, . . . , em+n of the latter, we can then estimate

|dΦp(ei)| ≤
√

m + n − k γ0 Lip(Φk) .

We then conclude by choosing γ0 ≤ γ
2
√

m+n−k
, given that our constructions certainly

implies Lip(Φk) ≤ 1 + εa ≤ 2.

4 Tools from geometric measure theory

The proof of our main theorems will make use of two technical propositions from
geometric measure theory, which do not involve the knowledge of sophisticated
topological tools.

Proposition 4.1 Let M be as in Assumption 1.3 and T be an integral m-dimensional
cycle in M. For every fixed εc > 0 there is an integral cycle P homologous to T and a
smooth triangulation K of M with the following properties:

(a0 ) M(P) ≤ (1 + εc)M(T);
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(b0 ) F(T − P) ≤ εc ;

(c0 ) spt(P) ⊂ {x : dist(x, spt(T)) ≤ εc};

(d0 ) P =
∑

F∈Fm βFJFK, where βF ∈ Z and Fm is the collection of m-dimensional
cells of K with an appropriately chosen orientation.

Furthermore, for a sufficiently small δ′c > 0 and any δc < δ′c we can find a second
integral cycle P′ homologous to P with the following properties:

(a) M(P′) ≤ (1 + 3εc)M(T) and F(T − P′) ≤ 3εc ;

(b) spt(P′) ⊂ {x : dist(x, spt(T)) ≤ 3εc};

(c) ∥P′∥(Bδ′c(K
m−2)) ≤ 3εc ;

(d) P′ M\ Bδc(Km−2) = JΓK for some smooth oriented submanifold Γ of M\
Bδc(Km−2) without boundary in M\ Bδc(Km−2).

Remark 4.2 A routine modification of the arguments used to prove Proposition 4.1
implies in fact that the cycle P′ can be chosen so that its singularities are all contained
in Km−2 . While this is a much weaker result than the one achieved by our main theorem
of constructing an integral cycle with singularities all contained in Km−5 , its proof can
however be completed without recurring to any sophisticated topological fact.

In the second proposition we are given two m-dimensional integral cycles S and R
which agree outside of a sufficiently small neighborhood of the m − 2-dimensional
skeleton Km−2 . We will then show that:

• S and R represent the same homology class;

• There is a smooth deformation R′ of R which is close, in terms of mass and in
flat norm, to S;

• R′ coincides with R outside a slightly larger neighborhood of Km−2 .

Proposition 4.3 Let m and M be as in Assumption 1.3 and let K be a smooth triangula-
tion of M. Then for every εd > 0 and every ηd > 0 there exists δd(εd, ηd,K,M) > 0
with the following property. Suppose S and R are m-dimensional integral cycles in M
and that

S M\ Bδd

(
Km−2) = R M\ Bδd

(
Km−2) .

Then S and R are homologous and moreover there exist an integral cycle R′ in their
homology class and a diffeomorphism Φ of M with the following properties:

(1) M(R′) ≤ (1 + εd)M(S);
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(2) F(R′ − S) ≤ C(εdM(S) + 2∥S∥(Bηd (Km−2)))
m+1

m , with C = C(M);
(3) R′ M\ Bηd

(
Km−2

)
= S M\ Bηd

(
Km−2

)
;

(4) Φ is in the isotopy class of the identity and R′ = Φ♯R.

Remark 4.4 Note that the parameter δd does not depend on S and R. Its dependence
on the parameters εd and ηd can be computed through our arguments, but since such
explicit dependence is irrelevant for our purposes, we will ignore the issue.

4.1 Proof of Proposition 4.1: first approximation

In this section we show the existence of the first approximating cycle P as in Proposition
4.1. It is quite possible that the existence of a P with the desired properties is
already proved in the existing literature; nevertheless, we have not been able to find
a precise reference for our purposes and therefore we provide a proof. Instrumental
to our argument is to consider the ambient manifold M to be smoothly isometrically
embedded in some Euclidean space RN (the codimension is irrelevant), which we can
always assume without loss of generality thanks to Nash’s Theorem.

Consider now the integral cycle T in M as an integral cycle of RN . By [18, Lemma
4.2.19] for every κ > 0 there is a diffeomorphism g and an integral m + 1-dimensional
current S such that

• Lip (g) ≤ 1 + κ and |g(x) − x| ≤ κ for all x;

• M(S) +M(∂S) ≤ κ;

• spt (S) ⊂ {x : dist(x, spt (T)) ≤ κ};

• g♯T + ∂S ∈ Pm(RN).

Note therefore that, if we set P̄ := g♯T + ∂S , then P̄ is a cycle,

M(P̄) ≤ (1 + κ)M(T) + κ

and
spt (P̄) ⊂ {x : dist(x, spt (T)) ≤ κ} ⊂ Bκ(M) .

We next observe that we can, without loss of generality, regard P̄ as

P̄ =
∑

i

kiJPiK

where each ki is a positive integer, each Pi is an oriented closed simplex, and for every
pair of distinct Pi and Pj , either Pi ∩ Pj = ∅ or Pi ∩ Pj is a common lower-dimensional
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face. This can be seen as follows: fix a representation as P̄ =
∑

j k̄jJP̄jK with k̄j positive
integers and P̄j oriented simplices. Fix a triangulation T of RN and apply Proposition
A.3 to refine T to a new triangulation T ′ with the property that each P̄j is the union of
m-dimensional simplices in T ′ (elements of the m-skeleton). The desired conclusion
is then immediate.

Assuming κ to be sufficiently small, we can further assume that the orthogonal projection
p : Bκ(M) → M is smooth, well-defined and with Lip (p) arbitrarily close to 1. More
precisely, Lip (p) = 1 + κ̄ where κ̄ ↓ 0 as κ ↓ 0.

We now consider the cycle p♯P̄. Because of the usual homotopy formula, and because
of the estimate above, we can ensure that

M(p♯P̄) ≤ (1 + Cκ̄)M(P̄) ≤ (1 + Cκ̄)(M(T) + κ),

F(T − p♯P̄) ≤ F(T − P̄) + F(P̄ − p♯P̄) ≤ κ+ Cκ̄M(P̄)

≤ κ+ Cκ̄(M(T) + κ),

spt (p♯P̄) ⊂ Bκ(spt(P̄)) ⊂ B2κ(spt (T)) .

Consider now that that K := spt(P̄) is a polyhedron in the sense of Definition A.4
and that p : K → M is a piecewise smooth map in the sense of Definition A.5. We
next fix a triangulation T of M, which again we understand as a piecewise smooth
homeomorphism φ of some PL-submanifold L ⊂ RN̄ onto M, according to Definition
A.5. We next recall the following proposition about uniqueness of smooth triangulations,
which is due to Whitehead, cfr. [36], and corresponding to [21, Lect. 5, Theorem 1]:

Proposition 4.5 Consider two piecewise smooth homeomorphisms f : L → M and
g : M → M where L ⊂ RN1 and M ⊂ RN2 are two finite polyhedra. Then for every
η > 0 there are two piecewise smooth homeomorphisms f ′ : L → M and g′ : M → M
which are η -close in the C1 -sense to f and g and such that f ′−1 ◦ g′ and g′−1 ◦ f ′ are
piecewise linear.

Recall that being f and f ′ piecewise smooth, for both there are triangulations T
and T ′ of L with the property that the restriction of each of the simplices of the
corresponding triangulation is a smooth function. Closeness in the C1 -sense means
that ∥f|∆∩∆′ − f ′|∆∩∆′∥C1 ≤ η for every ∆ ∈ T and ∆′ ∈ T ′ .

An inspection of the argument given in [21] shows that the invertibility of both maps is
only used to prove the piecewise linearity of both f ′−1 ◦ g′ and g′−1 ◦ f ′ . Adapted to
our setting, the arguments lead to the following conclusion.
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Proposition 4.6 For every η > 0 there is a piecewise smooth homeomorphism
ψ : L → M and a piecewise smooth map q : K → M such that:

(α) ψ and q are η -close in the C1 -sense to φ and p;

(β ) Ψ := ψ−1 ◦ q : K → L is piecewise linear.

Point (β ) means that there is a triangulation T1 of K and a triangulation T2 of L with
the property that every simplex ∆ in the triangulation T1 is mapped by ψ−1 ◦ q inside
some simplex ∆′ of T2 and that the restriction Ψ|∆ is an affine map.

We are now ready to declare that our cycle P is in fact given by q♯P̄. It is immediate to
see that

M(P) ≤ (1 + C(κ̄+ η))M(P̄) ≤ (1 + C(κ̄+ η))(M(T) + κ),

F(T − P) ≤ F(T − P̄) + F(P̄ − P) ≤ κ+ C(κ̄+ η)(M(P̄))

≤ κ+ C(κ̄+ η)(M(T) + κ),

spt (P) ⊂ Bκ+η(spt(P̄)) ⊂ B2κ+η(spt (T)) .

In particular, choosing κ, κ̄ and η appropriately, P satisfies the three desired estimates
(a0 ), (b0 ), and (c0 ) in Proposition 4.1.

Consider now the finite collection P simplices Γi which are images through Ψ of
some m-dimensional simplex ∆i of the triangulation of K . Some of these might have
dimension strictly smaller than m (which would mean that the affine map Ψ|∆ does not
have full rank). We then discard them from P . Upon choosing an orientation for the
Γi ’s, we clearly have that

P =
∑

i

ℓiψ♯JΓiK ,

for an appropriate choice of the multiplicities ℓi .

We now can apply Proposition A.6 and find a triangulation T3 of L which refines the
triangulation T2 and with the property that each Γi is the union of some elements
in the m-dimensional skeleton of T3 . The image through ψ of T3 gives the desired
triangulation K of M which satisfies the requirement (d0 ) in Proposition 4.1.

Finally, observe that there is an integral current Z in RN such that T − P̄ = ∂Z and
with spt(Z) ⊂ B2κ(M). In particular p♯Z provides an integral current in M such
that ∂p♯Z = T − p♯P̄. Given that p and q are close in the Lipschitz norm, there is
a Lipschitz homotopy of the two maps which takes values in B2κ(M). Composing
the latter homotopy with p, we find a Lipschitz homotopy Φ between the two maps
which takes values in M: through the homotopy formula this map provides an integral
current Z′ in M such that ∂Z′ = p♯P̄ − q♯P̄. In particular we conclude that P is in the
same homology class of p♯P̄ and hence in the same homology class of T in M.
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4.2 Proof of Proposition 4.1: second approximation

Starting with the approximation P and the triangulation K of the first part of Proposition
4.1 we now construct the approximation P′ of the second part. This is done in two
steps:

Step 1. Regularization on M \ Km−1 . In this first step we modify P using the
following algorithm.

We start by fixing, for the triangulation K , a suitable polyhedral submanifold K (cfr.
Definition A.5) of some Euclidean space RN and a piecewise smooth homeomorphism
ψ : K → M (cfr. again Definition A.5) which realizes the triangulation K in the sense
that, for some suitable triangulation T of the polyhedron K , the following holds: for
every cell F of K , its diffeomorphic preimage ψ−1(F) is a simplex of T . The current
P is then given

P =
∑

F∈Fm

βFJFK ,

where βF ∈ Z and Fm is the collection of m-dimensional cells of K . Without loss
of generality we can assume that βF ≥ 0. For every cell F with βF > 0 we consider
∆ := ψ−1(F) and we let Γ be an (m + 1)-dimensional simplex of the triangulation
T which contains ∆. We will replace βFJFK with

∑N
j=1Jψ(∆j)K, where the ∆j ⊂ Γ

are diffeomorphic images of ∆ ⊂ Γ with ∂∆j = ∂∆ and ∆j′ ∩∆j′′ = ∂∆ for every
j′ ̸= j′′ . In order to define the ∆j we will use the following elementary lemma.

Lemma 4.7 Consider the m-dimensional simplex Ω ⊂ Rm which is the convex hull
of {e0, e1, . . . , em}, where e0 = 0 and e1, . . . , em is the standard basis. For each
i ∈ {0, 1, . . . ,m} let Fi be the relative interior of the m − 1-dimensional face of Ω

spanned by e0, . . . , ei−1, ei+1, . . . , em . In other words, Fi consists of those points p
which can be written as convex combinations

∑
j λjej with λi = 0 and λj > 0 for every

j ̸= i.

Then there is a Lipschitz function f : Ω → R and a neighborhood V of
⋃

i Fi such that

(a) f is positive and smooth in the interior of Ω;

(b) f (x) = dist(x, ∂Ω) for every x ∈ V ;

(c) Lip (f ) ≤ C for some constant C = C(m).

With Lemma 4.7 at hand, we are ready to define ∆j . First of all let {v0, v1, . . . , vm} be the
extremal points of ∆, π the m-dimensional linear space spanned by {v1 − v0, . . . , vm −
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v0} and then let vm+1 be the only unit vector orthogonal to π with the property that
1
2
∑

i vi + γvm+1 ∈ Γ for every γ sufficiently small. Let A : ∆ → Ω be the affine map
defined by A(vi) = ei . Choose then positive numbers 0 < δ1 < δ2 < . . . < δβF and
define ∆j as

∆j = {x + δj f (A(x))vm+1 : x ∈ ∆} .

Provided the δβF is chosen sufficiently small, each ∆j is contained in Γ. Note moreover
that, by construction, ψ(∆j′) ∩ ψ(∆j′′) ⊂ Km−1 , the (m − 1)-dimensional skeleton of
K .

We perform the above construction for all F ’s with βF > 0. Upon enumerating them as
{Fi}, we denote by ∆i

j the corresponding m-dimensional cells in the polyhedron K , by
δi the number δβFi

and by Fi
j their images through ψ . We note further that, choosing

the δβFi
sufficiently small, we can ensure that Fi

j ∩ Fi′
j′ ⊂ Km−1 for every choice of

distinct pairs (i, j) and (i′, j′).

Consider now the integral current

P̃ :=
∑

i

∑
j

JFi
jK .

Clearly ∂(
∑

jJFi
jK) − ∂(βiJFiK) = 0 and so

∑
jJFi

jK − βiJFiK is a cycle Ti . Moreover
we can use the homotopy formula to ensure that M(Ti) is as small as needed provided
δi is chosen comparably small. We can also ensure that Hm(Fi

j) is as close as needed
to Hm(F) using the area formula. In particular we can conclude that, upon suitably
choosing the δi ’s,

• P̃ is in the same homology class as P (in M);

• spt(P̃) ⊂ B2εc(spt(T));

• M(P̃) ≤ (1 + 2εc)M(T);

• F(T − P̃) ≤ 2εc ;

• spt(P̃) \ Km−1 is smooth and is taken with multiplicity 1 by P̃, more precisely:

(S) for every p ∈ spt(P̃) \ Km−1 there is a neighborhood U of p and a smooth
oriented m-dimensional submanifold Λ of M∩U with boundary contained
in M∩ ∂U and such that P̃ U = JΛK.

In the next (and final) step of the proof of Proposition 4.1 we will perturb P̃ by removing
its m − 1-dimensional singularities away from a small neighborhood of Km−2 . But
before coming to that, we provide the elementary proof of Lemma 4.7.
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Proof of Lemma 4.7 We denote by Ωm−2 the m − 2-dimensional skeleton of ∂Ω,
namely the set of points which are convex combinations

∑
i λiei where at least two

among the coefficients λi vanish, while we denote by πj the affine m − 1-dimensional
space which is formed by linear combinations

∑
i λiei with λj = 0. Moreover we

denote by Aj the affine function which vanishes on πj and coincides with dist(p,Aj) on
the halfspace containing Ω.

We then observe that there is a (sufficiently small) positive constant ε0 and a (sufficiently
large) positive constant C0 , both depending on the dimension m, such that the following
holds.

(L) On the open set {p ∈ Ω : dist(p, πi) < ε0 and dist(p, πi) < C−1
0 dist(p,Ωm−2)}

the function dist(p, ∂Ω) coincides with the affine function Ai .

We now let Vk := {p ∈ Ω : 2−k−2 < dist(p, ∂Ω) < 2−k} for k ≥ 1, while
V0 := {p ∈ Ω : dist(p, ∂Ω) > 1

2} and we consider a partition of unity φk subordinate to
it with the property that ∥∇φk∥C0 ≤ C2k . Finally, we let ψ ∈ C∞

c (B1) be a nonnegative
mollifier with

∫
ψ = 1.

The function f : Ω → R is then defined as

f :=
∑

k

φkdist(·, ∂Ω) ∗ ψc02−k

for a sufficiently small constant c0 . Using (L) and the property that Ai ∗ ψλ = Ai

for every choice of λ, we see immediately that f coincides with dist(·, ∂Ω) in a
neighborhood of

⋃
i Fi . The positivity and smoothness of f in Ω is in turn obvious.

Finally, we can compute

∇f =
∑

k

∇φkdist(·, ∂Ω) ∗ ψc02−k +
∑

k

φk∇(dist(·, ∂Ω) ∗ ψc02−k ).

The second summand is bounded by ∑
k

φk = 1

because the distance function is 1-Lipschitz. As for the first summand, given that∑
k ∇φk = 0, it equals∑

k

∇φk(dist(·, ∂Ω) ∗ ψc02−k − dist(·, ∂Ω)) .

For every fixed p ∈ Ω, there is a j such that p is not in the support of φk for k > j + 2
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and k < j. We can thus write∣∣∣∣∣∑
k

∇φk(p)(dist(p, ∂Ω) ∗ ψc02−k − dist(p, ∂Ω))

∣∣∣∣∣
≤C2 j+2

j+2∑
k=j

|dist(p, ∂Ω) ∗ ψc02−k − dist(p, ∂Ω))| ≤ C ,

where we have used that |dist(p, ∂Ω) ∗ ψλ − dist(p, ∂Ω)| ≤ λ for every p with
dist(p, ∂Ω) > λ.

Step 2. Removing the (m − 1)-dimensional singularities. Next consider an arbitrary
face Fk as in the previous subsection and let σi be an arbitrary (m−1)-dimensional face
of Fk . Fix a δc > 0: the goal is to modify P̃ in a neighborhood of σ \ Bδc(Km−2) to a
new current P′ in the same homology class, close to it in terms of mass, support and flat
norm, and with the property that P′ is smooth in that neighborhood. The neighborhood
in which we will perturb P̃ is of the form Bλ(σ) \ Bδc(Km−2). First of all, given the
structure of P̃ obtained in the previous subsection, if λ is sufficiently small, there is an
open subset ∆i ⊂ Rm−1 and a smooth parametrization

Φ : ∆i × Bn+1
λi

→ M

of a normal neighborhood Ni of σ \Bδc(Km−2) with thickness λi and with the property
that spt(P̃ \ Ni) can be described in the following way. There are a finite number of
distinct unit vectors w1, . . . ,wL ∈ ∂Bn+1

1 ⊂ Rn+1 such that, if we let

Λℓ = {(σ, swℓ) : σ ∈ ∆i, 0 < s < λi} ,

then P̃ Ni =
∑L

ℓ=1 ϵℓΦ♯JΛℓK, where ϵℓ takes values in {−1, 1}. Given that P̃ has no
boundary in Ni , we conclude that L must be an even number 2L̄ and that exactly L̄
among the numbers ϵℓ equal 1, while the remaining equal −1. We can thus write

P̃ Ni =

L̄∑
ℓ=1

Φ♯JΛℓK −
2L̄∑

ℓ=L̄+1

Φ♯JΛℓK .

Consider now the oriented halflines Hℓ = {λwℓ : λ > 0} in Rn+1 . Upon reordering
them, we can find disjoint smooth oriented curves γℓ for ℓ ∈ {1, . . . , L̄} in Rn+1 with
the property that JγℓK Rn+1 \ B1 = (JHℓK − JHL̄+ℓK) Rn+1 \ B1 . Furthermore we let
τt : Rn+1 → Rn+1 be the homothety y 7→ ty and denote by γℓ,t the curve τt(Hℓ). We
are now ready to define a replacement for P̃ Ni . We fix a smooth compactly supported
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function ψi in Rn+1 which is positive on ∆i and vanishes on ∂∆i , a small positive
number κi , and we define

Σi :=

{
(x, y) : x ∈ ∆i, y ∈

⋃
ℓ

γℓ,κiψi(x)

}
∩∆i × Bn+1

λi
.

Choosing κi sufficiently small we can ensure that the current

Pi := Φ♯Σ
i

satisfies ∂Pi = ∂(P̃ Ni). Moreover we can make F(Pi−P̃ Ni) and M(Pi)−M(P̃ Ni)
smaller than any desired threshold by choosing κi sufficiently small. Note finally that,
clearly, Σi is smooth in Ni .

We next enumerate all the m − 1-dimensional faces σi of all the m-dimensional faces
Fk as σ1, σ2, . . . , σN . We choose our parameters in such a way that the sets Ni are
pairwise disjoint. Our final current P′ will then be defined to be

P′ :=
∑

i

Pi + P̃ M\
⋃

i

Ni .

P′ M \ Bδc(Km−2) is then smooth by construction and, choosing the parameters
accordingly, P′ is homologous to P̃ and we achieve the desired estimates since we can
make spt(P′) arbitrarily close to spt(P̃), M(P′) arbitrarily close to M(P̃), and F(P′− P̃)
arbitrarily small.

Finally, coming to the estimate on ∥P′∥(Bδ′c(K
m−2)) observe that we know:

∥P′∥(M) ≤ ∥P∥(M) + 2εc

∥P′∥(M\ Bδ′c(K
m−2)) ≥ ∥P∥(M\ Bδ′c(K

m−2)) .

Hence

∥P′∥(Bδ′c(K
m−2)) = ∥P′∥(M) − ∥P′∥(M\ Bδ′c(K

m−2))

≤ ∥P∥(M) + 2εc − ∥P∥(M\ Bδ′c(K
m−2)) = ∥P∥(Bδ′c(K

m−2)) + 2εc

for every δ′c > δc . Hence δ′c must be chosen small enough just to ensure that
∥P∥(Bδ′c(K

m−2)) ≤ εc .

4.3 Proof of Proposition 4.3

First of all we observe the following consequence of the area formula.
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Lemma 4.8 Assume Φ, γ , and εa are as in Lemma 3.3. If Z is any integer rectifiable
current of dimension m > k , then

(9) M(Φ♯(Z Bδd (Kk))) ≤ C(1 + εa)kγm−k∥Z∥(Bδd (Kk)) ,

where C is a dimensional constant which depends only on m and n.

Proof Using the area formula, we have

M(Φ♯(Z Bδd (Kk))) =
∫

Bδd (Kk)
|dΦp(Z⃗(p))| d∥Z∥(p) ,(10)

where Z⃗(p) is a unit simple m-vector orienting Z at p. We can write v = ±v1 ∧ . . .∧ vm

for any orthonormal base of the approximate tangent space V to Z at p and estimate

|dΦp(Z⃗(p))| ≤ Πm
i=1|DΦp(ei)| .

Now consider the space W spanned by e1, . . . , ek and let pV(W) be its orthogonal
projection onto V . Clearly the dimension of W ′ := pV(W) is at most k and hence
its orthogonal complement W ′′ in V has dimension at least m − k . We can choose
an orthonormal base of V by completing an orthonormal base of W ′′ . On the other
hand any element of W ′′ is in the span of ek+1, . . . , em . In particular, we conclude that
|DΦp(w′′)| ≤

√
m − k γ|w′′| for any vector w′′ ∈ W ′′ . On the other hand the estimate

|DΦp(v)| ≤
√

m + n (1 + εa)|v| holds for any vector v ∈ TpM, thus completing the
proof of the estimate.

Proof of Proposition 4.3 We can assume, without loss of generality, that the homology
class of S is nontrivial, so that M(S) > 0. The conclusion that R and S are homologous
follows from the fact that they coincide outside Bδd (Km−2). In particular spt(S − R) ⊂
Bδd (Km−2): since for δd smaller than a constant c(K) the latter deformation retracts onto
Km−2 , whose m-dimensional homology is trivial, it follows that S−R is homologically
trivial.

We now let εd and ηd be given as in the statements. We further fix ε̄d , whose choice
will be specified later (but which will depend only on εd ), and apply Lemma 3.3 with
εa = ε̄d and ηa = ηd . We therefore get the parameter δa =: δd (which will be the one
of the conclusion of the proposition) and, after fixing yet another γ (whose choice will
now be dependent on R), we get the map Φ satisfying the requirements of Lemma
4.8. The requirements (3) and (4) of Proposition 4.3 are then satisfied by construction.
Moreover estimate (2) follows from the isoperimetric inequality and from (1) and (3).
Indeed there is an integral current T such that ∂T = S − R′ and

M(T) ≤ C
(
M(S − R′)

)m+1
m
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with C = C(M). Using (1) and (3) we then estimate

M(S − R′) = ∥S − R′∥(Bηd (Km−2)) ≤ ∥S∥(Bηd (Km−2)) + ∥R′∥(Bηd (Km−2))

= ∥S∥(Bηd (Km−2)) +M(R′) − ∥S∥(M\ Bηd (Km−2))

= 2∥S∥(Bηd (Km−2)) +M(R′) −M(S)

≤ 2∥S∥(Bηd (Km−2)) + εdM(S) .(11)

It remains to prove (1). Note that

M(R′) ≤ M(Φ♯(R Bδd (Km−2))) +M(Φ♯(R M\ Bδd (Km−2)))

= M(Φ♯(R Bδd (Km−2))) +M(Φ♯(S M\ Bδd (Km−2)))

≤ M(Φ♯(R Bδd (Km−2))) + (LipΦ)mM(S)

≤ M(Φ♯(R Bδd (Km−2))) + (1 + ε̄d)mM(S) .(12)

Hence we apply Lemma 4.8 and infer

M(R′) ≤ C(1 + ε̄d)m−2γ2M(R) + (1 + ε̄d)mM(S) .

Next we fix ε̄d so that (1 + ε̄d)m = 1 + εd
2 , and then we choose γ sufficiently small so

that
C(1 + ε̄d)m−2γ2M(R) ≤ εd

2
M(S) .

Note that the choice of γ , unlike that of εd , will indeed depend on R and S .

5 Proof of the main theorem

We begin with some preliminary lemmas.

Lemma 5.1 Let M be as in Assumption 1.3, K a smooth triangulation of M,
k ∈ {0, . . . ,m+ n− 1} and Uδ(Kk) as in Lemma 3.2. Then the complement of Uδ(Kk)
is homotopy equivalent to a complex of dimension m + n − k − 1.

Proof First we note that the complement of Uδ(Kk) is a deformation retract of the
complement of Kk by Lemma 3.1 and Lemma 3.2, and therefore K \ Uδ(Kk) is
homotopy equivalent to K \ Kk ; we then denote9

Kk
c := K \ Kk.

9With an abuse of notation between the simplicial complex and the t -image of the geometric
realization of the simplicial complex itself.
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Now we show that Kk
c is homotopy equivalent to a complex of dimension m+n− k−1,

and in particular that

(13) Kk
c ∼ Km+n−k−1

∗ ,

where K∗ is the dual cell complex of the triangulation K , cfr. [24, §64]. To this aim,
we first show the following:

(14) Kk
c ∼ Bs(K) − Bs(Kk),

where Bs(·) is the barycentric subdivision and the operation Bs(K)−Bs(Kk) represents
all simplexes of Bs(K) that are disjoint from Bs(Kk). By definition, we have that

Kk
c = K \ Kk = Bs(K) \ Bs(Kk).

Hence (14) follows just by noticing that, in terms of simplicial complexes, Bs(Kk) is a
full subcomplex of the complex Bs(K), i.e. every simplex of Bs(K) whose vertices are
in Bs(Kk) is itself in Bs(Kk), and by applying [24, Lemma 70.1]. Since the complex
Bs(K) − Bs(Kk) corresponds exactly to the m + n − k − 1-skeleton Km+n−k−1

∗ of the
dual cell structure of K , (13) follows, and hence the final result.

Lemma 5.2 Let h : T(γ̃n) → K(Z, n) be a map representing the Thom class u ∈
Hn(T(γ̃n),Z). Then h is an n + 4-equivalence, for all positive integers n.

Proof The spaces are the same for n ∈ {1, 2}: T(γ̃1) is homotopy equivalent to the
circle S1 , which is a realization of K(Z, 1), while T(γ̃2) is homotopy equivalent to
the infinite complex projective space CP(∞), of type K(Z, 2). Hence, we can assume
n ≥ 3. Towards an application of Theorem 2.3, we recall the computations of the
cohomology rings of K(Z, n) and of the classifying space BSO(n), for any group
coefficient Zp .

By Serre’s computations using spectral sequences of fibre spaces, the cohomology
Hn+i

(
K(Z, n)

)
with Z2 coefficients is generated by the Steenrod squares Sq2, Sq3

(and Sq4 if n ≥ 4) for i ≤ 4, see [25, Théorème 3]. By calculations of Cartan with
coefficients in Z3 , the cohomology Hn+i(K(Z, n)) is generated by P1

3 in dimensions
less than or equal to n + 4, while for Zp coefficients with prime p > 3 there are no
generators between dimension n and dimension n + 8, see for example [33, Chapitre II,
§8, §9] or [16, §10.5].

The cohomology ring of BSO(n) with coefficients in Z2 is generated by the Stiefel-
Whitney classes w2, . . . ,wn of γ̃n , cfr. Proposition B.3, that is

H∗(BSO(n),Z2
)
= Z2

[
w2,w3,w4 . . .wn

]
.
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For odd primes and in dimensions i ≤ 5, we have that, cfr. Proposition B.4,

H∗(BSO(n),Zp
)
= Zp

[
p1
]

if n ̸= 4,

H∗(BSO(4),Zp
)
= Zp

[
p1, e

]
, if n = 4.

For every p prime, let Φp denote the Thom isomorphism between Hi(BSO(n),Zp) and
H̃n+i(T(γ̃n),Zp) and up the Thom class. Since by Proposition B.2 and [23, Theorem
19.7] we have10 that Φ2(wi) = Sqi(u2) and Φ3(p1) = P1

3 (u3), it follows that, for any
group coefficient Zp , the induced map in cohomology

h∗ : Hn+i(K(Z, n),Zp
)
→ Hn+i(T(γ̃n),Zp)

is an isomorphism for dimensions less than or equal to n + 3 and a monomorphism in
dimension n + 4. Since K(Z, n) and T(γ̃n) are simply connected, by Theorem 2.3, we
conclude that

πk
(
K(Z, n),T(γ̃n)

)
= 0 for k ≤ n + 4,

ending the proof.

Remark 5.3 Lemma 5.2 shows that in particular that, for dimension m ∈ {1, 2, 3, 4}
and for any codimension n ∈ N \ {0}, every homology class τ ∈ Hm(M,Z) is
represented by an embedded smooth submanifold Σ in M. It is important to remark
that, by [33, p.56, footnote 9], we also know that every homology class of Hm(M,Z)
for m ≤ 6 is representable by a smooth submanifolds, due to the vanishing of the
obstruction of the corresponding Poincaré dual x , St5

3(x), where St5
3 represents (up to a

sign) the following cohomology operations, cfr. Remark 1.6,

St5
3 = β∗ ◦ P1

3 ◦ θ3 : H∗(M,Z) → H∗+5(M,Z).

Proof of Theorem 1.1 Fix εc > 0, whose choice will be specified later, and an integral
current T in a homology class τ ∈ Hm(M,Z). First of all apply Proposition 4.1 to
find a sufficiently small δ′c > 0, a suitable triangulation K of the manifold and a new
integral current P′ =: S with the property that S is in the same homology class of T
and the following facts hold:

• M(S) ≤ M(T) + 3εc and F(S − T) < 3εc ;

• ∥S∥(Bδ′c(K
m−2)) ≤ 3εc ;

• Bδ′c(K
m−2) is homotopy equivalent to Km−2 ;

• S M\ Bδc(Km−2) = JΓK for a smooth submanifold Γ.

10Denoting with a slight abuse p1 for p1 reduced mod 3.
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We observe the following important fact: if we first choose εc , then δc , δ′c and δc
δ′c

can
all be made smaller than any desired constant, while the triangulation is instead kept
fixed (because it depends only on εc ).

We have now fixed a triangulation K and we can therefore fix constant C0 and δ̄ so
that Lemmas 3.1 and 3.2 apply. We now require that Vδc/2(Km−2) ⊂⊂ Bδ′c(K

m−2)
for some δc/2 << δ′c . Hence we apply Lemma 3.2 (where δ′ < δ corresponds here
to δc/2 < δ̃/2) to find a Uδ̃/2(Km−2) suitably close to Vδ̃/2(Km−2). We will want
that Bδc(Km−2) ⊂ Uδ̃/2(Km−2) ⊂ Vδ̃/2(Km−2) ⊂ Vδ̃(Km−2) ⊂ Bδ′c(K

m−2). This step
requires to take δc

δ′c
sufficiently small and δ̃ < δ′c . Define now Ω := M\ Uδ̃/2(Km−2).

The current JΓK obtained from Proposition 4.1 is (when restricted to Ω and not
relabelled) a smooth compact oriented submanifold of Ω with ∂Γ ⊂ ∂Ω, provided ∂Ω
is transversal to Γ, which can be ensured via a small smooth perturbation. Denoting by
x ∈ Hn(M) the Poincaré dual of τ , note that its restriction x|Ω ∈ Hn(Ω) to Ω is the
relative Poincaré dual of a relative homology class which is represented by the smooth
compact embedded submanifold Γ ⊂ Ω with boundary ∂Γ = Γ ∩ ∂Ω. Hence, by
Theorem 2.6, there exists a map

F : Ω → T(γ̃n)

such that F∗(u) = x|Ω ; in addition, F is smooth and transverse on BSO(n) (and such
that F|∂Ω is also transverse), so that F−1(BSO(n)) = Γ, which is the smooth part of S .

We then take δ sufficiently small so that Ω ⊂ M \ Uδ(Km−5) for the Uδ given in
Lemma 3.2. Then, by Lemma 5.1 we have that M\ Uδ(Km−5) is homotopy equivalent
to a complex of dimension n + 4. Denote

Q := M\ Uδ(Km−5).

Given the n-dimensional cohomology class x ∈ Hn(M) which is the Poincaré dual of
τ , we consider its restriction to Q, that is x|Q ∈ Hn(Q); note that x|Q can be represented
by a continuous map

g : Q → K(Z, n)

(in a suitable homotopy class of continuous maps) pulling-back the fundamental class
of K(Z, n) to itself, i.e. g∗(ι) = x|Q. By Lemma 5.2 and Proposition 2.1, there exists a
map f : Q → T(γ̃n) such that the diagram commutes, i.e. f pulls-back the universal
Thom class to x|Q .
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T(γ̃n)

h
��

Q g
//

f
<<

K(Z, n)

By the same construction of the second part of the proof of Theorem 2.6, we can
assume without loss of generality that f is smooth throughout Q \ f−1(U(∞)) and
transversal to (a sufficiently high dimensional approximation of) the zero cross-section
BSO(n) ⊂ T(γ̃n), with ∂f also transversal to it. Hence, f−1(BSO(n)) is a compact
smooth m-dimensional embedded submanifold, with boundary contained in ∂Q; denote
it as

N := f−1(BSO(n)).

Moreover, N represents the relative Poincaré dual of x|Q , which equals j∗(τ ) ∈
Hm(Q, ∂Q), where j∗ : Hm(M) → Hm(Q, ∂Q).

We next wish to extend JN K (which is an integral current in M) to an integral current
N with the property that N M\Km−5 is a smooth submanifold with multiplicity 1
and N Q = JN K. First of all, because N is transversal to ∂Q, we can extend it to a
smooth submanifold over the union Q′ of Q with any smooth collaring extension of
∂Q. We can then use Lemma 3.2 to find such an extension Q′ (which consists of Q∪C ,
where C is the smooth tubular neighborhood in Lemma 3.2) containing M\ Vδ′(Km−5)
for some δ′ < δ positive. Since N intersects ∂Q transversally, we can extend to a
smooth submanifold of Q′ with boundary in ∂Q′ , meeting ∂Q′ transversally. With
abuse of notation this extension is still denoted by N . We can now use the map Φ of
Lemma 3.4 and set

N := Φ♯JN K.

The latter current is integer rectifiable because Φ is Lipschitz (and, in particular, N has
finite mass). Given that Φ is a diffeomorphism over M\Φ−1(Km−5) ⊂ M\Vδ′(Km−5),
then N M\Km−5 = JΣK for some smooth submanifold Σ. Moreover spt(∂N) ⊂
Km−5 and in particular, by Federer flatness theorem, ∂N = 0, namely N is a cycle.

Consider now the two maps F : Ω → T(γ̃n) and f : Q → T(γ̃n) such that
F−1(BSO(n)) = Γ and f−1(BSO(n)) = N ∩ Q. If we consider the restriction of
f to Ω ⊂ Q, we obtain a new map f |Ω : Ω → T(γ̃n) that pulls-back the universal
Thom class to x|Ω . By Lemma 5.1 we observe that Ω has the homotopy type of an
(n+1)-complex, so that by Corollary 2.2 we can conclude that F and f|Ω are homotopic:
the homotopy can be taken smooth by [33, Lemme IV.5]. In particular, we define the
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smooth homotopy H : [0, 1] × Ω such that H(0, x) = f|Ω(x) and H(1, x) = F(x). In
a small collar neighborhood C of ∂Ω inside Ω, which we identify with ∂Ω× (0, 1],
we then glue the maps f and F together. Using the notation x = (y, s) ∈ C and after
defining a smooth function φ on [0, 1] which is identically equal to 0 in a neighborhood
of 0 and identically equal to 1 in a neighborhood of 1, we set

(15) f̂ (x) :=


F(x) if x ∈ Ω \ C,
H (x, φ(s)) if x ∈ C,
f (x) if x ∈ Q \ Ω

Since T(γ̃n) \ {∞} is a smooth submanifold, it follows from [35, Proposition 2.3.4
(ii)] that we can find f̂ : Q → T(γ̃n), not relabelled, which is smooth throughout
Q \ f−1(U(∞)), coincides with f (x) in a neighborhood of ∂Q and with F on M \
Vδ̃(Km−2). Analogously, by [35, Proposition 4.5.10], we can perturb f̂ so that it is
transverse to BSO(n) and coinciding with f (x) in a neighborhood of ∂Q and with F on
M\ Vδ̃(Km−2).

Consider now the submanifold Σ′ of M\Km−5 which consists of:

• Σ in Vδ′(Km−5) \ Km−5 ;

• N on Uδ(Km−5) \ Vδ′(Km−5);

• f̂−1(BSO(n)) on Q.

This is a smooth submanifold because:

• f and f̂ coincide in a neighborhood of ∂Q and hence f̂−1(BSO(n)) coincides
with N in a neighborhood of ∂Q;

• Σ = Φ(N ) = N in a neighborhood of ∂Vδ′(Km−5).

Moreover, R = JΣ′K is an integer rectifiable current with finite mass and such that
spt(∂R) ⊂ Km−5 ; in particular it is a cycle by Federer’s flatness theorem. Observe also
that R − S is supported, by construction, in Vδ̃(Km−2), which is homotopy equivalent
to Km−2 , and thus has trivial m-homology. In particular R − S is a boundary, namely
R and S belong to the same homology class.

We now apply Proposition 4.3 to S and R, noticing that the εd in Proposition 4.3 is
a parameter to be chosen in terms of the ε of the statement of Theorem 1.1, and the
ηd in Proposition 4.3 is δ′c here. This gives us a parameter δd , which depends on εd

and δ′c . In turn we impose that δ̃ ≤ δd so that we can apply Proposition 4.3. Since
εd will be specified only in terms of M(T) and of ε in the statement of Theorem 1.1,
while δ′c depends on εc , which will also be specified only in terms of M(T) and ε in
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the statement of Theorem 1.1, the parameter δ̃ can be taken smaller than δd . We can
then find a current R′ := Φ♯R for a smooth diffeomorphism Φ isotopic to the identity
such that

M(R′) ≤ (1 + εd)M(S) ≤ (1 + εd)(M(T) + 3εc) .

We therefore conclude that R′ is homologous to R, hence to S , and therefore to T .
Moreover, if we choose

εd (3 +M(T)) <
ε

2
and 3εc <

ε

2
,

then M(R′) ≤ M(T) + ε. Finally

F(T − R′) ≤ 3εc + F(S − R′) ≤ 3εc + C(εd M(S) + 2∥S∥(Bδ′c(K
m−2)))

m+1
m

≤ 3εc + C(εd(M(T) + εc) + 6εc)
m+1

m .

Therefore it is clear that a suitable choice of εd and εc depending only on M(T) and ε
suffices to how F(T − R′) ≤ ε.

The proof of part (3) of Theorem 1.1 is analogous; by assumption we know that τ is
represented by a smooth closed submanifold Σ and hence, by Theorem 2.5 there exists
a map g : M → T(γ̃n) which pulls-back the universal Thom class u ∈ Hn(T(γ̃n),Z) to
the Poincaré dual of τ . Substituting in the previous steps the map f with this new map
g, defined over the whole ambient space M, and defining a similar homotopy as that
one in (15), the result follows by applying Proposition 4.3 to S and JΣK, where S is the
integral cycle denoted P′ in Proposition 4.1.

6 Optimality of the main theorem

The codimension 5 construction in Theorem 1.1 is the best possible result in full
generality, as shown by Theorem 6.3.

We start by recalling Thom’s example of an integral homology class of dimension 7 in
an orientable smooth manifold of dimension 14 which is not realizable by means of a
submanifold, cfr. [33, Théorème III.9]11.

11We remark that dimension 14 of the ambient space is not crucial: this example can be easily
adapted to the lowest possible dimension allowed, that is dimension 10; we also refer to [8]
for an example of a 7 dimensional integral homology class which does not admit a smooth
representative in a 10 dimensional manifold with torsion-free homology.
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Example 6.1 (Thom) For i = 1, 2 consider the lens space Li := S7/Z3 , which is the
orbit space of the 7-sphere with the free action of Z3 generated by the rotation. Let vi

be generator of H1(Li,Z3) ≃ Z3 and call ui = β3(vi) ∈ H2(Li,Z3) ≃ Z3 . Consider the
smooth oriented 14-dimensional manifold L := L1 × L2 and the following cohomology
class, where the powers and · denote the cup product (seeing H∗(Li) as embedded in
H∗(L)):

y = u1 · v2 · (u2)2 − v1 · (u2)3 ∈ H7(L,Z3).

Note that y is actually the reduction mod 3 of an integral cohomology class, since y =

β3(v1 ·v2 · (u2)2) and hence y = θ3(x), with x ∈ H7(L,Z) given by x = β∗(v1 ·v2 · (u2)2),
cfr. Remark 1.6 for the notation. Denoting by z ∈ H7(L,Z) its Poincaré dual homology
class, we see that z cannot be realized in L by a submanifold since

St5
3(x) = β∗ ◦ P1

3 (y) = β∗((u1)3 · v2 · (u2)2) = (u1 · u2)3 ̸= 0.

Remark 6.2 We remark that the obstruction to realizability comes from a cohomology
operation mod 3 and since y ∈ H7(L,Z3), then the Poincaré dual of 3y can be realized
by a submanifold. In general, it is a theorem of Thom, cfr. [33, Théorème II.29], that
for every integral homology class z ∈ Hk(M,Z) of a closed oriented manifold there
exists a non-zero integer N such that the class Nz is realizable by a submanifold.

Example 6.1 is the first example of innately singular homology classes: from a geometric
point of view, it represents a codimension 5 non-removable singularity which is the
geometric analogue of the algebraic obstruction given by the dual 3-torsion cohomology
operation St5

3. In particular, Thom’s innately singular class can be represented by a
7-dimensional cycle T with a 2-dimensional stratum of singularities, i.e. a closed
(equisingular) 2-dimensional manifold ST whose neighborhood is homeomorphic to a
product

ST × C(CP(2)),

where C(CP(2)) denotes the cone over CP(2); the innate nature of these singularities
turns out to be intrinsically linked to the well-known fact that CP(2) does not bound
any compact oriented smooth 5-dimensional manifold, as observed in [29].

This geometric description is a consequence of another insightful work of Thom, cfr.
[34], where he studied manifolds with singularities partitioning them into partially
ordered strata of varying dimensions; each such stratum has a neighborhood which is
a locally trivial bundle with fiber the cone on a compact manifold with singularities,
whose partially ordered set of strata has smaller dimension. This gives rise to a recursive
construction that enabled Thom to understand and provide a geometric description of
singularities.
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We will now exploit the geometric obstruction theory described in [29] for reducing
the dimension of singularites of a cycle. In particular, suppose T is a triangulated
space of dimension m, and ST its singularity locus of dimension s. Then, for every
s-dimensional simplex of ST we can consider its link, which is a well-defined (m−s−1)-
dimensional manifold; this link determines an element in a suitable cobordism group Ω

and the sum of the singular simplices with these link coefficients forms a cycle which
defines an obstruction, that is

ωT ∈ Hs(ST ,Ω).

If this obstruction vanishes, then it is possible to resolve the singularity by a blow-up
technique and reduce their dimension, cfr. [29, Theorem D]. Geometrically, this means
that any singular cycle representing a homology class can be resolved by replacing each
conic fiber of the top singularity stratum by compact manifolds bounding the links,
provided each link bounds a compact submanifold; the recurrence stops as soon as a
link of singularities which is not null-cobordant is met.

In particular, if T is an m-dimensional oriented geometric cycle, the natural obstructions
lie in

Hs(T, Ω̃r),

where Ω̃r denotes the r-dimensional oriented cobordism group and r = m − s − 1,
which coincides with the dimension of the link of each s-dimensional simplex of ST ;
we refer to [23, §17] for an introduction about the oriented cobordism graded ring Ω̃∗ .

Theorem 6.3 Let z ∈ H7(M,Z) be the Thom homology class of Example 6.1 and fix a
triangulation K of the smooth oriented closed manifold M. Then it is impossible to find
a representative Σ for z which is a smooth embedded submanifold in the complement
of the 1-dimensional skeleton of K .

Proof12Denote by T the 7-dimensional cycle representing Thom’s homology class, and
consider its singularity locus ST . Towards a proof by contradiction, assume that the
cycle is a substratified set of a Whitney stratification of M which only intersects the
one-skeleton K1 of a triangulation compatible with the stratification13.

For each 1-dimensional simplex in the cycle we consider its link, which is a 5-dimensional
closed oriented manifold. Since the obstruction to the resolution of singularities is an
element of

ωT ∈ H1(ST , Ω̃5)
12We are grateful to Dennis Sullivan for this elegant proof and enjoyable conversations.
13We refer to [34] and [20] for the notions about stratification theory.
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and the 5-dimensional oriented cobordism group Ω̃5 ≃ Z2 , by [29, Theorem D] the
cycle 2T can be resolved to the lower dimensional stratum, i.e. the zero-skeleton K0 .

Analogously, the link of each vertex is a 6-dimensional closed oriented manifold and the
oriented cobordism group Ω̃6 is trivial; thus, there is no obstruction to a full resolution
of the singularities of 2T , and hence of 2z. This is clearly in contradiction with Thom’s
algebraic obstruction which is 3-torsion, and that cannot be resolved if we multiply
Thom’s homology class z by a factor 2; that is St5

3(2y) ̸= 0, where y is the Poincaré
dual of z.

Remark 6.4 We remark that in [6, page 20] the counterexample to the construction is
not correct, since by [33, Corollaire II.28] every 5-dimensional integral homology class in
an oriented closed smooth manifold is representable by a smooth embedded submanifold,
and hence part (3) of Theorem 1.1 provides the desired smooth approximation.

Remark 6.5 As a byproduct of the proof of Lemma 3.3, it is also possible to show
the following. Let M, τ and T as in Assumption 1.3 and denote Sing(T) its singular
set (in the sense of [15, Definition 0.2]). If Hk(Sing(T)) = 0 for any k ∈ {1, . . . ,m},
then for every triangulation K of M there exists an integral current T ′ homologous
to T such that Sing(T ′) ⊂ Kk−1 with T ′ smooth in M\Kk−1 . Theorem 6.3 implies
that, in general, for an integral current T representing an integral homology class
τ ∈ Hm(M,Z) it is not possible to conclude that Hm−5(Sing(T)) = 0.
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A Useful lemmas on triangulations and simplicial decomposi-
tions

In this section we collect a few elementary facts about triangulating regions which are
used in the paper.

A.1 Algorithm to subdivide a convex polytope

First of all, we understand a convex polytope P of RN as a closed convex set with a
finite number of extremal points. Given a convex polytope P ⊂ RN we now describe
an algorithm to triangulate it. For any convex polytope we define its barycenter as the
point which is given by the convex combination of the extremal points with all equal
weights (if V1, . . . ,Vm are the extremal points of P, then the baricenter is 1

m

∑
i Vi).

First of all, a touching hyperplane π of P is an hyperplane such that

• π ∩ P is nonempty;

• P is contained in one of the two closed half-spaces bounded by π .

If the dimension of P is strictly smaller than N , then we let the set F of faces of P
be the collection of convex subsets of P of the form P ∩ π , where π varies among all
touching hyperplanes. If the dimension of P is N we add to F the polytope P itself.
We subdivide F as

dim (P)⋃
k=0

Fk ,

where Fk = {F ∈ F : dim (F) = k}. Clearly F0 consists of points and it is the set
of extremal points of P (in particular, it is a finite set) and any other element of F is
necessarily the convex hull of some appropriate subset of F0 .

In order to triangulate P, we first observe that all 1-dimensional faces and all 0-
dimensional faces are by definition simplices of the corresponding dimension. We
then list the 2-dimensional faces. For each face F which is not a triangle we consider
the barycenter b(F) and we decompose F into the triangles formed by b(F) and the
sides of F (namely, the 1-dimensional faces of F ). Note that the collection of all such
triangles (as F also varies among all 2-dimensional faces) has the following property:
the intersection of any pair of such triangles is either empty, or a common vertex, or a
common side. Next, fix a 3-dimensional face F which is not a simplex. Each of its
2-dimensional faces G is decomposed in triangles T ’s in the previous step. Decompose
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F in the 3-dimensional simplices constructed as convex hulls of any such T and the
barycenter b(F) of F (we can think of them as pyramids with basis T and vertex b(F)).
We have decomposed all 3-dimensional faces into 3-dimensional simplices S . Any
pair of such S (irrespectively of whether they belong to the decomposition of the same
3-dimensional face or to the decompositions of two distinct faces) has the property
that their intersection is a common lower-dimensional face. We proceed inductively
increasing the dimension of the faces at each step until we reach (and include) the one
of highest dimension, namely P.

The following elementary lemmas will play an important role.

Lemma A.1 If P ⊂ RN is a convex polytope and A : RN → RN an affine invertible
map, then the triangulation T ′ for A(P) obtained through the algorithm above coincides
with the image through A of the triangulation T obtained for P through the algorithm,
namely T ′ = {A(T) : T ∈ T }.

Lemma A.2 Let P,P′ ⊂ RN be two convex polytopes whose intersection is a common
face of both. Consider the triangulation T of P and the triangulation T ′ of P′ obtained
applying the algorithm above. Then the union of the two triangulations is a triangulation,
namely: the intersection of an arbitrary element of T with an arbitrary element of T ′

is a common face of both simplices.

A.2 Embedding convex polytopes into skeleta of refined triangulations

In this section we prove the following proposition.

Proposition A.3 Consider a finite family of convex m-dimensional polytopes {Pi} in
RN and a triangulation T of some closed subset of RN . Then there exists a triangulation
Tf finer than T with the property that each polytope Pi is union of elements of the
m-skeleton of Tf . Moreover, the refinement of T is local in the following sense: if we
denote by T ′ the collection of those N -dimensional simplices of T which intersect at
least one Pi , then any simplex of T which does not intersect an element of T ′ is not
refined (namely, it is also an element of Tf ).

We will give an algorithm to produce Tf . First of all, take all possible intersections of the
Pi ’s with N -dimensional simplices of T . This gives a collection of new m-dimensional
polytopes P̄j : each of them is contained in an N -dimensional simplex of T , which we
denote by Tj .
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We start with P̄1 . Because it is a convex polytope of dimension < N , we write it as
the intersection of a finite number of hyperplanes πi and a finite number of closed
halfspaces Hj . Then we build a finite collection H of pairs of halfspaces H−

i , H+
i by

adding for each H+
j := Hj the closure of its complement H−

j , and for ever πi the pair
of closed halfspaces which have πi as a boundary. We then subdivide T1 inductively in
smaller convex N -dimensional polytopes in the following way. In the first step we keep
T1 if it is contained in one of the two halfspaces {H+

1 ,H
−
1 }, otherwise we replace it

with the pair {H+
1 ∩ T1,H−

1 ∩ T1}. At step j we assume to have a finite collection of
closed convex N -dimensional polytopes and each of them is kept if it is contained in
one of the two halfspaces H+

j+1,H
−
j+1 , otherwise it is replaced by the two intersections

with them.

The resulting collection is a partition of T1 into convex polytopes with the property that
any two faces of any two polytopes intersect in a common face. Moreover, the original
P1 is the m-dimensional face of some convex polytope of this partition. We apply to
each of these N -dimensional polytopes the triangulating algorithm of Section A.1 and,
by Lemma A.1, we obtain a triangulation of T1 . However, T1 has faces in common
with other simplices of T which are not yet partitioned. In order to remedy, we proceed
inductively as follows. We first denote by Sk be the collection of k-dimensional faces
of T1 ; we start with the edges S1 and add to S2 every triangle of T which contains
an edge σ ∈ S1 and add it to S2 . The new triangles are triangulated compatibly with
the elements of S1 by adding its barycenter and connecting it with edges to all its
vertices and all the new points in the edges of S1 that it might contain. Observe that
this procedure does not subdivide any edge of the initial triangulation T which is not
in S1 . Similarly, at step j we enlarge Sj+1 with all the j + 1-dimensional simplices
which contain an element of Sj as a face. Each new simplex S added is triangulated by
considering its barycenter b(S) and subdividing S into the pyramids which:

• have vertex b(S) and basis a j-dimensional face F of S , in case F does not
belong to Sj ;

• have vertex b(S) and basis a j-dimensional simplex of the subdivision of the face
F ∈ Sj obtained so far inductively if the other case;

We stop the procedure when we have subdivided the final new elements added to the
collection SN . The final result is a triangulation.

Observe that, by construction, in the new triangulation T1 the polytope P1 is the union
of elements of the m-dimensional skeleton.

We now proceed inductively with the subsequent polytopes. However, observe that,
at the j + 1-th step, the simplex Tj+1 might not be an element of the triangulation Tj .
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However, if that is the case, by construction there is a collection C of N -dimensional
simplices of Tj whose union is precisely Tj+1 . The first subdivision algorithm in which
we intersected T1 with halfspaces is in this case applied simultaneously to all of the
elements of C . This then results into a subdivision S of Tj+1 into convex polytopes
which has the two properties of the subdivision obtained in the previous argument for
T1 . This subdivision has however the additional feature that, for any element C of C ,
there is an appropriate subcollection S ′ of S which is in fact a subdivision of it. The
remaining part of the algorithm outlined above is then applied verbatim and the result is
the next triangulation Tj+1 .

A.3 Embedding polytopes in skeleta of refinements of polyhedra

In this section we extend the algorithm of the previous subsection to handle more
general piecewise linear ambient closed manifolds. For simplicity we assume that the
latter are suitably embedded into some higher-dimensional Euclidean space.

Definition A.4 A finite polyhedron in RN is the collection of finitely many simplices
of RN .

A finite poyhedron K always admits a finite triangulation, namely a finite collection of
simplices T with the following properties:

• Any face of an element of T belongs to T ;

• The intersection of any two elements of T is always either empty or a face of
both;

• The union of the elements of T is K .

Although this is a classical fact, note that it is also a consequence of Proposition A.3.

Definition A.5 We will consider continuous maps f over finite polyhedra K taking
values into a smooth manifold M. Such maps f will be called piecewise smooth if there
is a triangulation T of K with the property that the restriction of f to every simplex
in T is smooth. The map will be called a piecewise smooth homeomorphism if in
addition it is an homeomorphism with the image and if the triangulation can be chosen
so that, for every simplex σ ∈ T , the differential D(f |σ) of the restriction of f to σ has
maximal rank at every point. When such a map exists between some polyhedron K and
some smooth compact manifold M without boundary, we say that K is an embedded
piecewise linear closed submanifold of RN .
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It is a classical result of Whitehead that if f : K → M is a piecewise smooth
homeomorphism, then every pair of triangulations of K admits a further triangulation
which is a common refinement of both.

The generalization of Proposition A.3 that we are looking for is then the following.

Proposition A.6 Consider a polyhedron K which is a piecewise linear m + n-
dimensional submanifold of RN , let {Pi} be a finite collection of m-dimensional
convex polytopes all contained in K , and let T be a triangulation of K . Then there is a
triangulation Tf of K which refines T and has the property that every Pi is the union
of finitely many elements of the m-skeleton of Tf .

We quickly describe how to modify the algorithm explained in Section A.2. As in
there, we intersect the polytopes with the m-dimensional simplices of T , reducing the
proposition to the case in which each Pi is contained in an m + n-dimensional simplex
of Ti . Moreover, as in there, we refine T0 = T into T1 , T2 , and so on, “embedding”
one Pi at a time.

At the starting step the algorithm gives first a way to triangulate T1 so that P1 is the
union of the m-skeleton of this local triangulation. In the argument, T1 is supposed to
be an m + n-dimensional simplex of Rm+n , but this can be easily achieved identifying
the m + n-dimensional affine plane π containing T1 with Rm+n . We then further
triangulate all simplices of T which intersect T1 , proceeding inductively from the lower
dimensional ones. Since at each stage of this second algorithm a single simplex is
considered at a time, we can think of this as also taking place in some Euclidean space.

At the inductive step, when embedding Pj+1 into a refinement of Tj , the only difference
is that the first subdivision is carried over all at once on all the m + n-dimensional
simplices Cj of Tj which are contained in Tj+1 . Again, the only important point is that,
like above, Tj+1 is an m + n-dimensional simplex. The second part, which refines the
triangulation of Tj over all simplices intersecting at least one element of Cj , is the same
as in the initial step.

B Cohomology operations and characteristic classes

In this section we collect a few results about cohomology operations, characteristic
classes and the cohomology of BSO(n), see also [31, 27, 23, 16].
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B.1 Cohomology operations

A cohomology operation of type (π, n; ρ,m) is a family of functions

θX : Hn(X, π) → Hm(X, ρ),

one for each space X , satisfying the naturality condition f ∗θY = θX f ∗ for any map
f : X → Y . The set of cohomology operations of type (π, n; ρ,m) can be denoted by
O(π, n; ρ,m). A cohomology operation θ is said to be additive if θX is a homomorphism
for every X . An important result on the classification of these operations in terms of the
cohomology of Eilenberg-MacLane spaces is the following.

Theorem B.1 There is a one-to-one correspondence

O(π, n; ρ,m) → Hm(K(π, n), ρ),

given by θ → θ(ιn), where ιn is the fundamental class of K(π, n).

The Steenrod squares Sqi , i ≥ 0, are additive cohomology operations of type
(Z2, n;Z2, n + i),

Sqi : Hn(X,Z2) → Hn+i(X,Z2),

defined for all n and such that

(1) Sq0 = 1, the identity;

(2) if deg u = n, then Sqnu = u ⌣ u;

(3) if i > deg u, then Sqiu = 0;

(4) if u, v ∈ H∗(X,Z2), then

Sqk(u ⌣ v) =
∑

i+j=k

Sqiu ⌣ Sq jv.

This condition is usually called Cartan formula.

The above properties characterize the cohomology operations Sqi . It is then possible to
prove existence and uniqueness of such operations, cfr. [28]. From the above properties
it is possible to derive the following.

(5) Sq1 is the Bockstein homomorphism β induced by the short exact coefficient
sequence

0 → Z2 → Z4 → Z2 → 0;
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(6) if 0 < a < 2b, then

SqaSqb =

⌊a/2⌋∑
j=0

(
b − 1 − j

a − 2j

)
Sqa+b−jSq j,

where the binomial coefficient is taken mod 2. These relations are usually called
Adem relations;

(7) Sqi(σ(u)) = σ(Sqiu), where σ : Hn(X,Z2) → Hn+1(ΣX,Z2) is the suspension
isomorphism given by reduced cross-product with a generator of H1(S1,Z2) and
ΣX the reduced suspension of X .

This last property says that the Steenrod squares are stable operations, i.e. they commute
with the cohomology suspension operation.

There are analogous additive operations for odd primary coefficients: the reduced
Steenrod pth -powers P i of type O(Zp, n;Zp, n + 2i(p − 1)) for p an odd prime14 and
written

P i : Hn(X,Zp) → Hn+2i(p−1)(X,Zp).

They satisfy the following properties.

(1) P0 = 1, the identity;

(2) if deg u = 2i, then P iu = u ⌣ · · ·⌣ u, p times;

(3) if 2i > deg u, then P iu = 0;

(4) if u, v ∈ H∗(X,Zp), then

Pk(u ⌣ v) =
∑

i+j=k

P iu ⌣ P jv.

This is the Cartan formula;

In analogy with Steenrod squares, the above properties characterize the cohomology
operations P i : it is then possible to prove existence and uniqueness of such operations,
cfr. [28]. From the above properties it is possible to derive the following.

(5) P i(σ(u)) = σ(P iu), where σ : Hn(X,Zp) → Hn+1(ΣX,Zp) is the suspension
isomorphism given by reduced cross-product with a generator of H1(S1,Zp);

(6) if a < pb, then

PaPb =

⌊a/p⌋∑
j=0

(−1)a+j
(

(p − 1)(b − j) − 1
a − pj

)
Pa+b−jP j.

These are the Adem relations.
14Sometimes the notation P i

p is used to highlight the coefficient group Zp .
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We note that by the Adem relations, the operation Sq2i+1 is the same as the composition
Sq1Sq2i = βSq2i , so that Sq2i can be understood as P i for p = 2.

Another additive cohomology operation for odd primary coefficients is the Bockstein
homomorphism βp of type O(Zp, n;Zp, n + 1) for p an odd prime and written

βp : Hn(X,Zp) → Hn+1(X,Zp),

which is obtained from the short exact coefficient sequence 0 → Zp → Zp2 → Zp → 0.

Composition endows the set of stable cohomology operations with a natural ring
structure: this ring is known as the Steenrod algebra and usually denoted by Ap . The
Steenrod algebra A2 is defined to be the the algebra over Z2 that is the quotient of the
algebra of polynomials in the noncommuting variables Sqi , i ≥ 1, by the two-sided
ideal generated by the Adem relations. Analogously, the Steenrod algebra Ap for odd
p is defined to be the algebra over Zp formed by polynomials in the noncommuting
variables βp,P i , i ≥ 1, modulo the Adem relations and the relations β2

p = 0. Thus, for
every space X , H∗(X,Zp) is a module over Ap for all primes p; the Steenrod algebra
is a graded algebra with the elements of degree i being those that map Hn(X,Zp) to
Hn+i(X,Zp) for all n. It is possible to prove that A2 is generated as an algebra by the
elements Sq2k

and Ap for p odd prime is generated by βp and the elements Ppk
.

More generally, let R be a commutative ring with unit. We recall that on the category
of free chain complexes C over R and short exact sequences of R modules

(16) 0 → G′ φ−→ G
ψ−→ G′′ → 0

there is a functorial connecting homomorphism

β∗ : H∗(C,G′′) → H∗(C,G′)

of degree 1 and a functorial exact sequence

· · · → Hn(C,G′)
φ∗
−→ Hn(C,G)

ψ∗
−→ Hn(C,G′′)

β∗
−→ Hn+1(C,G′) → . . . ,

cfr. [27, Theorem 4.5.11]. The connecting homomorphism β∗ (sometimes just
denoted β when the coefficient group is clear from the context) is called the Bockstein
cohomology homomorphism corresponding to the coefficient sequence (16).

B.2 Characteristic classes

We define Stiefel-Whitney cohomology classes of a vector bundle axiomatically. For a
proof of existence and uniqueness of cohomology classes satisfying these 4 axioms we
refer to [23].
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(1) To each real vector bundle ξ with base space B(ξ) there corresponds a sequence
of cohomology classes

wi(ξ) ∈ Hi(B(ξ),Z2), i = 0, 1, 2, . . . ,

called the Stiefel-Whitney classes of ξ . The class w0(ξ) is equal to the unit
element

1 ∈ H0(B(ξ),Z2)

and wi(ξ) equals zero for i > n if ξ is an n-plane bundle.

(2) (Naturality) If f : B(ξ) → B(η) is covered by a bundle map from ξ to η , then

wi(ξ) = f ∗wi(η).

(3) (Whitney Product Theorem) If ξ and η are vector bundles over the same base
space, then the Stiefel-Whitney class of a direct sum is the cup product of the
summands’ classes

wk(ξ ⊕ η) =
k∑

i=0

wi(ξ) ⌣ wk−i(η).

(4) For the canonical line bundle15 γ1
1 over RP(1), the Stiefel-Whitney class w1(γ1

1 )
is non-zero.

Proposition B.2 Stiefel-Whitney classes wi(ξ) ∈ Hi(B) can be characterized in terms
of the Steenrod operations by showing the following equality:

wi(ξ) = Φ−1SqiΦ(1) = Φ−1Sqiu,

where Φ is the Thom isomorphism and u ∈ H̃n(T(ξ),Z2) is the Thom class of ξ .

This shows that wi(ξ) is the unique cohomology class in Hi(B) such that Φ(wi(ξ)) =
π∗wi(ξ) ⌣ u is equal to SqiΦ(1) = Sqiu, cfr. also [32].

All the discussion about Stiefel-Whitney classes works analogously for complex vector
bundles, except that for complex vector bundles all the cohomology classes belong to Z
coefficient cohomology: they are called the Chern classes. One possible way to define
Chern classes is the following.

15Let E(γ1
n ) be the subset of RP(n) × Rn+1 consisting of all pairs ({±x}, v) such that the

vector v is a multiple of x . Recall that the canonical line bundle over the real projective space
RP(n) is the vector bundle π : E(γ1

n ) → RP(n) defined by π({±x}, v) = {±x} . Thus each
fiber π−1({±x}) can be identified with the line through x and −x in Rn+1 ; each such line is to
be given the usual vector space structure.



50 Frederick Almgren† , William Browder, Gianmarco Caldini and Camillo De Lellis

There is a unique sequence of functions c0, c1, c2, · · · assigning to each complex vector
bundle ω with E π−→ B a class ci(ω) ∈ H2i(B,Z), depending only on the isomorphism
type of ω , such that:

(1) c0(ω) equals the unit element 1 ∈ H0(B,Z) and ci(ω) = 0 for i > n if ω a
complex n-plane bundle;

(2) ci(f ∗(ω)) = f ∗(ci(ω)), for a pull-back bundle f ∗(ω);

(3) if ω1 is a complex n-plane bundle and ω2 a complex m-plane bundle, then

ck(ω1 ⊕ ω2) =
k∑

i=0

ci(ω1) ⌣ ck−i(ω2);

(4) for the canonical line bundle ω with E π−→ CP(1), c1(E) is a generator of
H2(CP(1),Z) specified in advance.

We now define the Pontryagin classes pi(ξ) ∈ H4i(B,Z) associated to a n-plane bundle
ξ in terms of Chern classes. For an n-plane bundle ξ with E → B, its complexification
is the complex n-plane bundle ξC with EC → B obtained from the real n-plane bundle
ξ ⊕ ξ by defining scalar multiplication by the complex number i in each fiber Rn ⊕ Rn

via the rule i(x, y) = (−y, x). Thus, each fiber Rn of ξ becomes a fiber Cn of ξC . The
Pontryagin class pi(ξ) is then defined to be

pi(ξ) := (−1)ic2i(ξC) ∈ H4i(B,Z).

Let ξ be an oriented (real) n-plane bundle E π−→ B and consider the restriction
homomorphism H̃∗(T(ξ),Z) → H∗(E,Z) induced by the inclusion and denoted as
y 7→ y|E . In particular, applying this homomorphism to the Thom class u ∈ H̃n(T(ξ),Z),
we obtain a new cohomology class

u|E ∈ Hn(E,Z).

Recalling that Hn(E,Z) is canonically isomorphic to Hn(B,Z), we can define the Euler
class of an n-plane bundle ξ as the cohomology class

e(ξ) ∈ Hn(B,Z)

corresponding to u|E under the isomorphism π∗ : Hn(B,Z) → Hn(E,Z).

B.3 Cohomology of BSO(n)

In this subsection we describe the mod p cohomology of the classifying space for
oriented n-plane bundles BSO(n).
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We recall that the mod 2 cohomology of BSO(n) can be computed as follows, cfr. [23,
Theorem 12.4].

Proposition B.3 The cohomology H∗(BSO(n),Z2) is a polynomial algebra over Z2 ,
freely generated by the Stiefel-Whitney classes w2(γ̃n), . . . ,wn(γ̃n).

The cohomology ring of BSO(n) with coefficients in an odd prime p has the following
structure, cfr. [23, Theorem 15.9].

Proposition B.4 If Λ is an integral domain containing 1/2, then the cohomology ring

H∗(BSO(2n + 1),Λ)

is a polynomial ring over Λ generated by the Pontrjagin classes p1(γ̃2n+1), . . . , pn(γ̃2n+1).
Similarly,

H∗(BSO(2n),Λ)

is a polynomial ring over Λ generated by the Pontrjagin classes p1(γ̃2n), . . . , pn−1(γ̃2n)
and the Euler class e(γ̃2n).

That is, for every value of n, even or odd, the ring H∗(BSO(n),Λ) is generated by the
characteristic classes p1, . . . , p⌊n/2⌋ , and e. These generators are subject only to the
relations e = 0 for n odd and e2 = pn/2 for n even.
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C List of symbols

Here we list some notations of the article:

Kj j-skeleton of the triangulation K;
Bδ(A) δ-neighborhood of A, i.e. {x : dist{x,A} < δ};
Vδ(Kj) neighborhood of Kj defined in Subsection 3.1;
Uδ(Kj) neighborhood of Kj with smooth boundary defined in Lemma 3.2;
spt(T) support of the current T;
BSO(n) classifying space for oriented n-plane bundles;
γ̃n universal oriented n-plane bundle over BSO(n);
T(γ̃n) Thom space of the universal oriented n-plane bundle;
K(π, n) Eilenberg-MacLane space of type (π, n);
Sqi Steenrod squares;
P i

p Steenrod reduced pth power for odd prime p;
βp Bockstein homomorphism for odd prime p;
wi ith Stiefel-Whitney class of γ̃n;
pi ith Pontrjagin class of γ̃n;
e Euler class of γ̃n;
St2r(p−1)+1

p Thom’s Steenrod powers defined after Remark 1.6;
Ω̃r r-dimensional oriented cobordism group.
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