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Abstract

In this paper we study Hankel operators in the quaternionic setting. In particular we prove that
they can be exploited to measure the L∞ distance of a slice L∞ function (i.e. an essentially bounded
function on the quaternionic sphere ∂B which is affine with respect to quaternionic imaginary units)
from the space of bounded slice regular functions (i.e. bounded quaternionic power series on the
quaternionic unit ball B). Among the difficulties arising from the non-commutative context there is
the lack of a good factorization result for slice regular functions in the Hardy space H1.

KEY WORDS AND PHRASES: functions of a quaternionic variable; Hankel operators.
MATHEMATICS SUBJECT CLASSIFICATION: 30G35, 47B35

1 Introduction

A linear operator on a Hilbert space is called a Hankel operator if its associated matrix has constant
antidiagonals. Given any sequence α = {αn}n∈N with values in the skew field of quaternions, we can
form the infinite matrix Mα = (αj+k)

+∞
j,k=0 with constant antidiagonals, and let Γα acting on quaternion

valued sequences v = (vj)
+∞
j=0 by matrix multiplication: (Γαv)(j) =

∑∞
k=0 αj+kvk. The classical

Nehari Theorem (see [17]) characterizes the (complex valued) sequences α such that the Hankel operator
Γα is bounded on the Hilbert space `2(N,C). Together with Nicola Arcozzi, we investigated this problem
in the quaternionic setting in [6]. We showed that, in analogy with the complex valued case, where
the problem can be translated in terms of holomorphic functions, in the quaternionic setting it can be
reformulated in terms of slice regular functions. This class of function, introduced by Gentili and Struppa
in [14], represents in fact a valid counterpart in the quaternionic setting to holomorphic functions. We
refer to the monograph [13] for all results and proofs concerning the theory of slice regular functions.
For a survey of the theory of Hankel operators in the complex setting see [18].

The purpose of the present work is to give an interpretation of quaternionic Hankel operators as tools
to measure the distance of a bounded quaternionic slice function from the space of bounded slice regular
functions.
∗Partially supported by INDAM-GNSAGA, by the PRIN project Real and Complex Manifolds, by the FIRB project Differ-

ential Geometry and Geometric Function Theory, and by the SIR 2014 project Analytic Aspects of Complex and Hypercomplex
Geometry (code no. RBSI14DYEB) of the Italian MIUR.
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Let H denote the skew field of quaternions, let B = {q ∈ H : |q| < 1} be the quaternionic
unit ball and let ∂B be its boundary, containing elements of the form q = etI , I ∈ S, t ∈ R, where
S = {q ∈ H : q2 = −1} is the two dimensional sphere of imaginary units in H. We endow ∂B with the
measure dΣ

(
etI
)

= dσ(I)dt, which is naturally associated with the Hardy space H2(B) of slice regular
functions on B, see [5]. The measures are normalized so that Σ(∂B) = σ(S) = 1.

The class of functions we are considering satisfies the following algebraic condition: a function f
defined on ∂B is called a slice function if for any two sphere of the type etS := {etI : I ∈ S} contained
in ∂B,

f(etJ) = a(t) + Jb(t),

where a, b are quaternion valued functions depending only on t. Namely f is slice if its restriction to
each sphere etS is affine in the imaginary unit variable. Slice functions were introduced and studied
by Ghiloni and Perotti in the more general setting of real alternative algebras in [16]. The restriction
to ∂B of slice regular functions furnishes an important class of examples of slice function. A concrete
example is given by convergent (for almost every t) power series of the form eIt 7→

∑
n∈Z e

Intan, with
quaternionic coefficients an. For instance, such a series does converge if the sequence of coefficients
{an} belongs to `2(Z,H). Power series with coefficients in `1(Z,H) are considered in [4].

Let Ls(∂B) denote the space of measurable slice functions and, for 1 ≤ p < +∞, let Lp(∂B)
denote the space of (equivalence classes of) functions f : ∂B→ H such that ‖f‖pp :=

∫
∂B |f |

pdΣ <∞.
For p = +∞, L∞(∂B) denotes the space of (equivalence classes of) measurable functions essentially
bounded with respect to the measure dΣ. The space of slice Lp functions will be denoted by Lps(∂B) =
Lp(∂B)∩Ls(∂B). It is possible to show that Lps(∂B) has a natural structure of right linear space over H
(to be more precise of a right H modulus), and of a Banach space.

In the case p = 2, we have

Proposition 1.1.

L2
s(∂B) =

{
f ∈ L2(∂B) : for a.e. q ∈ ∂B, f(q) =

∑
n∈Z

qnan with {an} ∈ `2(Z,H)
}

and the inner product 〈∑
n∈Z

qnan,
∑
n∈Z

qnbn

〉
L2
s(∂B)

:=
∑
n∈Z

bnan

endows L2
s(∂B) with the structure of a quaternionic Hilbert space.

For the extention of classical functional analysis results to the quaternionic setting we refer to the
book [8] and, for the specific case of slice functions, to [15].

The first result concerning the study of Hankel operators is a reformulation of the Nehari type The-
orem proved in [6] in which we give a characterization of bounded Hankel operators is given in terms
of slice L∞ functions. The norm of a bounded linear operator T mapping a quaternionic normed linear
space U to another quaternionic normed linear space V is defined as usual as

‖T‖B(U) := sup
u∈U ,u6≡0

‖Tu‖V
‖u‖U

.
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Theorem 1.2. Let α = {αn}n∈N ⊂ H be a quaternion valued sequence. The operator Γα mapping any
sequence a = {an} ∈ `2(N,H) to the sequence defined by

(Γαa)(n) :=
∑
j≥0

αn+jaj

is bounded on `2(N,H) if and only if there exists ψ(q) =
∑

n∈Z q
nψ̂(n) ∈ L∞s (∂B) such that ψ̂(m) =

αm for any m ≥ 0. In this case

inf{‖ψ‖L∞(∂B) : ψ ∈ L∞s (∂B), ψ̂(m) = αm,m ≥ 0} ≤ ‖Γα‖B(`2(N,H))

≤ 2 inf{‖ψ‖L∞(∂B) : ψ ∈ L∞s (∂B), ψ̂(m) = αm,m ≥ 0}.
(1)

The proof of the “if and only if” part of the statement exploits two results. The first one is Theorem
1.1 in [6], which gives several equivalent conditions on the sequence α and its generating function q 7→∑

n∈N q
nαn in order to have a bounded operator Γα. In particular we will use the following:

Theorem 1.3. Let α = {αn}n∈N ⊂ H be a quaternion valued sequence. Then the operator Γα is
bounded on `2(N,H) if and only if the function q 7→

∑
n∈N q

nαn belongs to the space BMOA(∂B).

The symbol BMOA(∂B) denotes the space of slice regular functions on B with bounded mean oscilla-
tion. See Section 3 for the precise definition. The second result exploited is a representation result for
quaternionic BMO functions proved in Section 3. The main point here relies in the estimates (1) of the
norm of Γα. In the proof of the second inequality in (1) the lack of a good factorization result for slice
regular functions in the Hardy space H1(B) requires some attention. Moreover a duality result that may
have an independent interest is needed:

Theorem 1.4. The dual space (L1
s(∂B))∗ is isometrically isomorphic to L∞s (∂B).

Hankel operators admit also a realization as operators from the quaternionic Hardy space (viewed as
a subspace of L2

s(∂B))

H2(∂B) =
{
f ∈ L2(∂B) : for a.e. q ∈ ∂B, f(q) =

∑
n≥0

qnan with {an} ∈ `2(N,H)
}

to its orthogonal complement H2
−(∂B) in L2

s(∂B). Given any ϕ(q) =
∑

n∈Z q
nϕ̂(n) ∈ L2

s(∂B) we can
define the operator Hϕ : H2(∂B)→ H2

−(∂B) as

Hϕf := P−(ϕ ? f) =
∑
n<0

qn
∑
k≥0

ϕ̂(n− k)f̂(k). (2)

where the symbol ? denotes an appropriate multiplication operation between slice functions, and P− is
the orthogonal projection from L2

s(∂B) onto H2
−(∂B).

Translating Theorem 1.2 from sequences in `2(N,H) to functions in L2
s(∂B), allows us to prove our

main result.

Theorem 1.5. Let ϕ ∈ L∞s (∂B). Then

‖Hϕ‖B(H2(∂B)) = inf{‖ϕ− f‖L∞(∂B) : f ∈ H∞(∂B)}. (3)
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Here H∞(∂B) denotes the space of bounded slice regular functions on B, introduced in [11], viewed as
a subspace of L∞s (∂B). By compactness, the infimum in equation (3) is attained for any ϕ ∈ L∞s (∂B):
there exists always a regular function g ∈ H∞(∂B) such that

‖Hϕ‖B(H2(∂B)) = ‖ϕ− g‖L∞(∂B) = distL∞(ϕ,H∞(∂B)).

A function g realizing the distance of ϕ from H∞(∂B) is called an L∞-best approximation of ϕ by a
slice regular function.

We conclude this article with some further results. The first one concerns the uniqueness of a best
approximation, and the second one gives a characterization of bounded Hankel operators in terms of shift
operators.

The paper is structured as follows: in Section 2 we give some background on slice and slice regular
functions; in Section 3 we establish the setting of our study, we introduce slice Lp and BMO (equiv-
alence classes of) measurable functions and we prove some functional analytical results needed in the
sequel; Section 4 is devoted to prove Theorems 1.2 and 1.5, together with some further results concerning
bounded Hankel operators.

2 Preliminaries

In this section we recall the definitions of slice and of slice regular functions over the quaternions H,
together with some basic properties. Let S denote the two-dimensional sphere of imaginary units of H,
S = {q ∈ H | q2 = −1}. One can “slice” the space H in copies of the complex plane that intersect along
the real axis,

H =
⋃
I∈S

(R + RI), R =
⋂
I∈S

(R + RI),

where LI := R + RI ∼= C, for any I ∈ S. Each element q ∈ H can be expressed as q = x + yIq,
where x, y are real (if q ∈ R, then y = 0) and Iq is an imaginary unit. To have uniqueness outside
the real axis we can choose y > 0. The conjugate of q is q̄ = x − yI and its modulus is given by
|q|2 = qq̄ = x2 + y2. Every non-zero quaternion has a multiplicative inverse, denoted by q−1, that can
be computed as q−1 = q/|q|2, hence providing H with the structure of a skew field over R. For any
Ω ⊆ H and for every I ∈ S we will denote by ΩI the intersection Ω ∩ LI .

Let us focus our attention to quaternion valued functions defined on the boundary ∂B of the quater-
nionic unit ball B := {q ∈ H : |q| < 1}. This domain present an important symmetry property: for
any quaternion x + yI contained in ∂B, the entire two dimensional sphere x + yS is contained in ∂B.
On subsets presenting such a symmetry it is possible to give the definition of slice functions. This class
of functions was introduced and studied in a more general setting by Ghiloni and Perotti in [16]. We do
not intend to give here all the details. In this paper a function f : ∂B→ H will be called a slice function
if it is affine on spheres of the form x + yS contained in ∂B with respect to the imaginary unit. More
precisely, f is slice if for any I, J ∈ S and for any x+ yI ∈ ∂B

f(x+ yJ) =
1

2
(f(x+ yI) + f(x− yI)) +

JI

2
(f(x− yI)− f(x+ yI))

=
1− JI

2
f(x+ yI) +

1 + JI

2
f(x− yI).

(4)
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In the sequel we will adopt equation (4) as definition of slice functions.
A concrete example of slice functions is given by convergent (for almost every t) power series of

the form eIt 7→
∑

n∈Z e
Intan, with quaternionic coefficients an ( in fact, for any n, eInt = cos(nt) +

I sin(nt)).
The restriction to ∂B of slice regular functions on open balls centered at the origin Br = {q ∈ H :

|q| < r} gives an important class of examples of slice function: a function f : Br → H is called slice
regular if for any I ∈ S the restriction fI of f to Br ∩ LI is holomorphic, i.e. it has continuous partial
derivatives and it is such that

∂IfI(x+ yI) =
1

2

(
∂

∂x
+ I

∂

∂y

)
fI(x+ yI) = 0

for all x+yI ∈ Br∩LI . In fact (see [13]), a function f is slice regular onBr if and only if it has a power
series expansion f(q) =

∑∞
n=0 q

nan converging in Br and such functions clearly satisfy representation
formula (4) on the entire Br.

We point out that equation (4) also furnishes a tool to uniquely extend a function fI defined on a
circle ∂BI to a slice function f := ext(fI) defined on the entire ∂B,

ext(fI)(x+ yJ) =
1− JI

2
fI(x+ yI) +

1 + JI

2
fI(x− yI).

The operator ext was introduced in the setting of slice regular functions in [9]. Since pointwise product
of functions does not preserve the classes of slice and of slice regular functions, a new multiplication
operation is defined, the so called regular or ?-product. In the case of slice regular functions defined on
Br it has an expression given in terms of their power series expansion, which can be naturally extended
to (a.e.) convergent power series of the form

∑
n∈Z qan, with |q| = 1. Let f(q) =

∑
n∈Z q

nan and
g(q) =

∑
n∈Z q

nbn be two slice functions on ∂B. Then

f ? g(q) :=
∑
n∈Z

qn
∑
k∈Z

akbn−k.

As for slice regular power series the ?-product is related to the standard pointwise product by the follow-
ing formula.

Proposition 2.1. Let f, g be slice functions on ∂B admitting expansions f(q) =
∑

n∈Z q
nan and g(q) =∑

n∈Z q
nbn. Then

f ? g(q) =

{
0 if f(q) = 0
f(q)g(f(q)−1qf(q)) if f(q) 6= 0

The proof follows by the same computation that gives the result in the slice regular case (see[13]). Also
the notions of regular conjugation and of symmetrization can be generalized to the case of power series
with negative powers. If f(q) =

∑
n∈Z q

nan is a slice function on ∂B, the regular conjugate and the
symmetrization of f are

f c(q) :=
∑
n∈Z

qnan and fs(q) := f c ? f(q) = f ? f c(q) respectively.
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The reciprocal f−? of f(q) =
∑

n∈Z q
nan with respect to the ?-product is then given, as in the regular

case, by

f−?(q) =
1

f ? f c(q)
f c(q).

The function f−? is defined on ∂B \{q ∈ ∂B | f ? f c(q) = 0} and f ? f−? = f ? f−? = 1. We conclude
this preliminary section with the following proposition, that can be proved by direct computation, as in
the case of slice regular power series.

Proposition 2.2. Let f, g be slice functions on ∂B admitting expansions f(q) =
∑

n∈Z q
nan and g(q) =∑

n∈Z q
nbn. Then (f ? g)c = gc ? f c.

3 Slice Lp functions

In this section we establish the setting of our study. In particular we introduce the spaces of equivalence
classes of slice Lp functions and that of slice BMO functions.

Let I ∈ S. For 1 ≤ p < +∞, we will denote byLp(∂BI) the space of quaternion valued (equivalence
classes of) measurable functions f : ∂BI → H such that ‖f‖pLp(∂BI)

:=
∫ 2π
0 |f(eIt)|pdt < +∞ and by

Lp(∂B) the space of (equivalence classes of) measurable functions f : ∂B→ H such that

‖f‖pLp(∂B) :=

∫
∂B
|f(q)|pdΣ(q) < +∞,

where dΣ is the volume form naturally associated with the Hardy space H2(B), introduced in [5]: if q =
eIt, then dΣ(q) = dσ(I)dt and dΣ, dσ are normalized so that dΣ(∂B) = dσ(S) = 1. For p = ∞, we
will denote by L∞(∂BI) the space of essentially bounded (equivalence classes of) measurable functions
on ∂BI . The space L∞(∂B) contains (equivalence classes of) measurable functions f : ∂B → H such
that

||f ||L∞(∂B) := ess sup
q∈∂B
|f(q)| < +∞,

where the essential supremum is taken with respect to the measure dΣ:

ess sup
q∈∂B
|f(q)| = inf{λ ≥ 0 : Σ ({q ∈ ∂B : |f(q)| > λ}) = 0}.

Quaternionic Lp spaces share many of the basic properties of classical complex Lp spaces. In this
paper we will not investigate the general theory of these function spaces, in particular we will focus our
attention to their subspaces of slice functions. We recall here that in [7] the Lp norm of the orthogonal
projection from the space L2(∂B) to its closed subspace L2

s(∂B) is studied.
A first (easy) remark is that the restriction to a single slice of an element of Lp(∂B) does not nec-

essarily belong to Lp(∂BI) for every I ∈ S (but only for σ-almost every I), while clearly the opposite
implication holds true. The two notions coincide in the case of slice functions. For 1 ≤ p ≤ +∞,
let Lps(∂B) denote the space of measurable slice functions bounded in Lp-norm. Using representation
formula (4) it is not difficult to prove

Proposition 3.1. For any 1 ≤ p ≤ +∞, a slice function f : ∂B→ H belongs to Lp(∂B) if and only if it
belongs to Lp(∂BI) for one and hence for any I ∈ S.
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As in the case of Hp spaces of slice regular functions, studied in [11], it can be proven that Lps(∂B)
spaces have a natural structure of quaternionic right Banach spaces. In the case p = 2, as in the case of
the Hardy space H2(B) (see [1] and [2]) the inner product

〈f, g〉L2(∂B) :=

∫
∂B
gfdΣ

gives to L2(∂B) the structure of a quaternionic Hilber space. Moreover, when considering slice L2

functions, we obtain the following result.

Proposition 3.2.

L2
s(∂B) =

{
f ∈ L2(∂B) : for a.e. q ∈ ∂B, f(q) =

∑
n∈Z

qnan with {an} ∈ `2(Z,H)
}
.

In particular, {qn}n∈Z is an orthonormal basis of L2
s(∂B).

Proof. On the one hand, il f ∈ L2(∂B), recalling that dΣ is the product of dt with dσ, we get that there
exists I ∈ S such that f ∈ L2(∂BI). Then if f splits on LI with respect to J ∈ S, J ⊥ I , as f(z) =
F (z) +G(z)J , the orthogonality of I and J guarantees that the splitting components F,G : ∂BI → LI
are complex L2 functions. Therefore they admit a representation of the form

F (z) =
∑
n∈Z

znF̂ (n), G(z) =
∑
n∈Z

znĜ(n)

where z ∈ ∂BI and F̂ (n), Ĝ(n) denote the n-th Fourier coefficient of F and G respectively. For any
z ∈ ∂BI we can therefore write

f(z) =
∑
n∈Z

zn(F̂ (n) + Ĝ(n)J) =:
∑
n∈Z

znf̂(n),

where the sequence {f̂(n)}n∈Z belongs to `2(Z,H) thanks to fact that J ⊥ I and {F̂ (n)}n∈Z and
{Ĝ(n)}n∈Z belong to `2(Z,C). If furthermore f satisfies equation (4), since every q = x+yJ ∈ ∂B can
be written as q = 1−JI

2 (x+ yI) + 1+JI
2 (x− yI), then the power series expression of f can be extended

to the whole ∂B as
f(q) =

∑
n∈Z

qnf̂(n).

Notice that this also shows that the coefficients f̂(n) do not depend on the choice of the slice LI .
On the other hand, if f(q) =

∑
n∈Z q

nan with q ∈ ∂B and {an}n∈Z ∈ `2(Z,H), then the restriction
fI of f to LI belongs to L2(∂BI ,H) for any I ∈ S. In fact, for any n,m ∈ Z,

∫ 2π
0 e−ntIemtIdt = 2πδmn

(which proves the orthonormality of functions q 7→ qn), and hence∥∥∥∑
n∈Z

qnan

∥∥∥2
L2(∂BI ,H)

=
∑
n∈Z
|an|2 = ‖{an}n∈Z‖2`2(Z,H) < +∞.

Equality x + yJ = 1−JI
2 (x + yI) + 1+JI

2 (x − yI), for any I, J ∈ S, immediately implies that f is a
slice function.
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In particular L2
s(∂B) endowed with the inner product〈∑

n∈Z
qnan,

∑
n∈Z

qnbn

〉
L2
s(∂B)

=
∑
n∈Z

b̄nan

is a quaternionic Hilbert space. We point out that for any f(q) =
∑

n∈Z q
nan, g(q) =

∑
n∈Z q

nbn ∈
L2
s(∂B), their inner product can also be expressed in an integral form as〈∑

n∈Z
qnan,

∑
n∈Z

qnbn

〉
L2
s(∂B)

=
1

2π

∫ 2π

0
g(eIθ)f(eIθ)dθ

where I is any imaginary unit. Since it does not depend on the imaginary unit, we can also write〈∑
n∈Z

qnan,
∑
n∈Z

qnbn

〉
L2
s(∂B)

=

∫
S
dσ

1

2π

∫ 2π

0
g(eIθ)f(eIθ)dθ =

∫
∂B
g(q)f(q)dΣ(q) = 〈f, g〉L2(∂B).

(5)

Notice that the L2 norm of a function f ∈ L2
s(∂B) depends only on the moduli of the coefficients of its

power series expansion. Hence f ∈ L2(∂B) if and only if its regular conjugate f c does, and moreover

‖f‖2L2
s(∂B)

=
∑
n∈Z
|f̂(n)|2 =

∑
n∈Z

∣∣∣f̂(n)
∣∣∣2 = ‖f c‖2L2

s(∂B)
.

We can split L2
s(∂B) into two orthogonal subspaces: the Hardy space

H2(∂B) :=
{
f ∈ L2(∂B) : for a.e. q ∈ ∂B, f(q) =

∑
n≥0

qnan with {an} ∈ `2(N,H)
}

and its orthogonal complement (with respect to the inner product) in L2
s(∂B)

H2
−(∂B) :=

{
f ∈ L2(∂B) : for a.e. q ∈ ∂B, f(q) =

∑
n<0

qnan with {a−n} ∈ `2(N,H)
}
.

In what follows we will denote by P+ and P− the orthogonal projections from L2
s(∂B) onto H2(∂B)

and H2
−(∂B) respectively.

Since slice regular functions on B are characterized by having a power series expansion converging
in B, it is natural to identify the space H2(∂B) with the Hardy space of the unit ball H2(B). Moreover,
since L∞s (∂B) ⊂ L2

s(∂B), the space H∞(∂B) = L∞s (∂B) ∩H2(∂B) of slice L∞ (equivalence classes
of) functions belonging to the span of {qn}n≥0 can be identified with the space of bounded slice regular
functions H∞(B).

For any 0 < p ≤ +∞ a notion of quaternionic Hp space is given in [11]. In particular in [11] it is
proven that the radial limit of slice regular functions in Hp exists on each slice along almost any radius
and it belongs to Lp(∂BI) for any 0 < p ≤ +∞. Taking into account that functions in Hp(B) satisfy the
Representation Formula (4), we easily conclude that their (a.e.) radial limit belongs in fact to the space
Lps(∂B). In particular, for any 1 ≤ p ≤ +∞, identifying each function with its radial limit, the space
Hp(B) can be viewed as a subspace of Lp(∂B) , in the sequel denoted by Hp(∂B). Another fact about
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functions in Hp(B) that we will use in the sequel is that the radial limit of a function that does not vanish
identically is almost everywhere nonvanishing (see again [11]).

Our next goal is to show that the dual space of slice L1 functions is the space of slice L∞ functions.
To this aim we first need a couple of preliminary results.

Proposition 3.3. The space L2
s(∂B) is a dense subspace of L1

s(∂B)

Proof. Cauchy-Schwarz inequality implies that as in the complex case, L2
s(∂B) ⊂ L1

s(∂B). To prove
the density, let f ∈ L1

s(∂B) and fix I ∈ S. The restriction fI of f to ∂BI belongs to L1(∂BI). Then,
if J ⊥ I , and fI decomposes on ∂BI as fI = F I + GIJ with F I , GI : ∂BI → LI , thanks to the
orthogonality of I and J we have that both F I and GI belong to the complex space L1(∂BI , LI). Using
the density of the L2 space of the complex unit circle in the L1 space of the complex unit circle, we find
two sequences {F In}, {GIn} ∈ L2(∂BI , LI) converging in L1 norm respectively to F I andGI . Therefore
the sequence fI,n := F In +GInJ converges in L1(∂BI) to fI . If we consider the extension fn := ext fI,n
of fI,n to a slice function defined on ∂B, recalling formula (4), we get that fn ∈ L2

s(∂B) for any n ∈ N
and since f = ext(fI), and ext is a linear operator,

‖fn − f‖L1(∂B) =

∫
S
dσ(J)

1

2π

∫ 2π

0
| ext(fI,n − fI)(eJt)|dt

≤
∫
S
dσ(J)

1

2π

∫ 2π

0

(
|(fI,n − fI)(eIt)|+ |(fI,n − fI)(e−It)|

)
dt

=
1

2π

∫ 2π

0
|(fI,n − fI)(eIt)|dt+

1

2π

∫ 2π

0
|(fI,n − fI)(e−It)|dt

= 2‖fI,n − fI‖L1(∂BI).

Hence we conclude that fn converges in L1(∂B) to f .

The following result is a quaternionic version of the classical Hahn-Banach Theorem.

Theorem 3.4. Let X be a quaternionic normed right linear space and let Y be a subspace of X . Then
for any bounded right linear opeartor λ in the dual space Y ∗ there exists a bounded right linear operator
Λ in X∗ such that Λ|Y = λ and such that ‖Λ‖X∗ = ‖λ‖Y ∗ .

The first part of the statement is proven in [8]. The complete result can be obtained adapting the proof
of Theorem III.6 and of the following Corollary 1 in [19] from the complex case to the quaternionic
case (i.e. considering the decomposition of the considered operator with respect to the real part and to 3
imaginary units).

We can finally prove the following natural relation.

Theorem 3.5. The dual space (L1
s(∂B))∗ is isometrically isomorphic to L∞s (∂B).

Proof. On the one side, for any ψ ∈ L∞s (∂B), the functional Tψ(·) := 〈·, ψ〉L2
s(∂B), is a bounded right

linear functional on L1
s(B): for any f ∈ L1

s(∂B)

|Tψ(f)| ≤
∫
∂B
|ψ(q)||f(q)|dΣ ≤ ‖ψ‖L∞(∂B)‖f‖L1(∂B),

9



i.e. ‖Tψ‖B(L1
s(∂B)) ≤ ‖ψ‖L∞(∂B).

On the other side, let Λ be a bounded right linear operator on L1
s(∂B), and let λ be its restriction to

L2
s(∂B). Since L2

s(∂B) is a quaternionic Hilbert space we get that λ ∈ (L2
s(∂B))∗ = L2

s(∂B), namely
that there exists ϕ ∈ L2

s(∂B) such that

λ(f) = Tϕ(f) = 〈f, ϕ〉L2
s(∂B)

for any f ∈ L2
s(∂B). Thanks to the quaternionic Hahn-Banach Theorem 3.4 and Proposition 3.3, we get

that we can uniquely extend λ to L1
s(∂B), i.e. that Λ(g) = Tϕ(g) = 〈g, ϕ〉L2

s(∂B) for any g ∈ L1
s(∂B).

To conclude, we are left to show that ϕ ∈ L∞(∂B). We will proceed by contradiction. Suppose that for
any N > 0 there exists a measurable subset EN ⊆ ∂B such that Σ(EN ) = εN > 0 and |ϕ(q)| > N for
any q ∈ EN . Then, for any N > 0 consider the function ϕN := χEN

ϕ|ϕ|−1. Now |ϕN | = |χEN
| =

χEN
, so ϕN ∈ L∞(∂B) ⊂ L2(∂B) =

(
L2(∂B)

)∗ since L2(∂B) is a quaternionic Hilbert space. Hence,
on the one hand, using Cauchy-Schwarz inequality we can write∣∣〈ϕ,ϕN 〉L2(∂B)

∣∣ ≤ ‖ϕ‖L2(∂B) · ‖ϕN‖L2(∂B) = ‖ϕ‖L2(∂B)

∫
∂B
|ϕN |2dΣ

= ‖ϕ‖L2(∂B)

∫
∂B
χEN

dΣ = ‖ϕ‖L2(∂B)εN . (6)

On the other hand ∣∣〈ϕ,ϕN 〉L2(∂B)
∣∣ =

∣∣∣∣∫
∂B
χEN
|ϕ|−1ϕϕdΣ

∣∣∣∣ =

∫
EN

|ϕ|dΣ > NεN . (7)

Combining inequalities (6) and (7) we get that

‖ϕ‖L2(∂B) > N.

Since ϕ is bounded in L2 norm and N is arbitrarily large, we get a contradiction, thus proving that
ϕ ∈ L∞(∂B).

Another property that we will need in the sequel is the following.

Proposition 3.6. A function ϕ belongs to L∞s (∂B) if and only if its regular conjugate ϕc does. Moreover
the two norms coincide, ‖ϕ‖L∞(∂B) = ‖ϕc‖L∞(∂B).

The proof exploits the fact that we are considering slice functions admitting a power series expansion,
and follows the same lines than the proof in the slice regular case, see Proposition 5 and Corollary 1 in
[10].

We can now give the notion of slice BMO space, i.e. the space of slice functions f : ∂B→ H with
bounded mean oscillation.

Definition 3.7. Let f ∈ L1
s(∂B) and, for any interval a = (α, β) of R such that |a| := |β − α| ≤ 2π,

denote by fI,a the average value of f on the arc (eαI , eβI) ⊆ ∂BI ,

fI,a =
1

|a|

∫
a
f(eθI)dθ.

10



We say that f ∈ BMO(∂BI) if

‖f‖BMO(∂BI) := sup
a⊂R, |a|≤2π

{
1

|a|

∫
a
|f(eθI)− fI,a|dθ

}
< +∞.

We say that f ∈ BMO(∂B) if

‖f‖BMO(∂B) := sup
I∈S
‖f‖BMO(∂BI) < +∞.

The space of slice regular functions on B with bounded mean oscillation has been introduced in
[6] and there it is denoted by BMOA(B). In this paper, since in fact BMOA(B) coincides with the
intersection of BMO(∂B) with the space H1(B), viewed as a subspace of L1

s(∂B), we will denote it as
BMOA(∂B).
Taking into account the Representation Formula (4) it is possible to show the following result.

Proposition 3.8. Let f ∈ L1
s(∂B). Then f ∈ BMO(∂B) if and only if f ∈ BMO(∂BI) for every

I ∈ S.

See [6] for a proof in the case of slice regular functions.
As in the complex case (see, e.g., [12]) we have a characterization of slice BMO functions in terms

of slice L∞ functions.

Proposition 3.9. A slice L1 function f belongs to BMO(∂B) if and only if there exist ϕ,ψ ∈ L∞s (∂B)
such that f admits the representation

f = ϕ+ P+ψ. (8)

Proof. Consider the splitting of f on the slice LI with respect to J ∈ S, J orthogonal to I , f = F +GJ
for some functions F,G : ∂BI → LI . For any real interval a = (α, β), with |a| ≤ 2π, denote by Fa and
Ga the average values of F and G on the arc (eIα, eIβ). Thanks to the orthogonality of I and J we have
that

‖f‖BMO(∂BI) = sup
a⊂R, |a|≤2π

{
1

|a|

∫
a

(
|F (eθI)− Fa|2 + |G(eθI)−Ga|2

)1/2
dθ

}
.

Since the quantity on the right side is greater or equal than both ‖F‖BMO(∂BI) and ‖G‖BMO(∂BI), and is
smaller than the sum ‖F‖BMO(∂BI)+‖G‖BMO(∂BI), we have that f belogns toBMO(∂BI) (and hence
toBMO(∂B)) if and only if both F andG belong to the complexBMO space on the unit circle ∂BI . A
consequence of the classical Fefferman Theorem (the results are in fact equivalent, see [12]) yields that
this is equivalent to the fact that F and G admit a representation of the form

F = ϕ1 + PI+ψ1, G = ϕ2 + PI+ψ2

where PI+ denotes the orthogonal projection from the complex space L2(∂BI , LI) to the complex Hardy
space H2(∂BI) and ϕ1, ϕ2, ψ1, ψ2 ∈ L∞(∂BI , LI). Therefore f ∈ BMO(∂BI) if and only if

fI = F +GJ = ϕ1 + PI+ψ1 + (ϕ2 + PI+ψ2)J = ϕ1 + ϕ2J + PI+(ψ1 + ψ2J)

where, thanks to the orthogonality of I and J , ϕI := ϕ1+ϕ2J and ψI := ψ1+ψ2J belong to L∞(∂BI).
Extending the functions ϕI and ψI by means of formula (4), i.e. defining ϕ(x+yJ) = ext(ϕI)(x+yJ)
and ψ(x+yJ) = ext(ψI)(x+yJ), leads us to conclude: slice functions belongs to L∞(∂B) if and only
if they belong to L∞(∂BI) on one and hence on each slice ∂BI (see Proposition 3.1).
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4 Hankel operators

Given any quaternion valued sequence α : N → H we can define the Hankel operator Γα, acting on H
valued sequences v = (vj)

+∞
j=0 as

(Γαv)(j) =
∞∑
k=0

α(j + k)v(k),

i.e. by matrix multiplication by the infinite matrixMα = [α(j+k)]+∞j,k=0 with constant antidiagonals. As
we said in the introduction, Nehari’s problem concerns the characterization of bounded Hankel operators.
Let us begin by a reformulation of Nehari Theorem in the quaternionic setting, involving slice L∞

functions (compare with Theorem 1.1 in [6]).

Theorem 4.1. Let α = {αn}n∈N ⊂ H be a quaternion valued sequence. Then the operator Γα is
bounded on `2(N,H) if and only if there exists ψ ∈ L∞s (∂B) such that ψ̂(m) = αm for any m ≥ 0. In
this case

inf{‖ψ‖L∞(∂B) : ψ ∈ L∞s (∂B), ψ̂(m) = αm, m ≥ 0} ≤ ‖Γα‖B(`2(N,H))

≤ 2 inf{‖ψ‖L∞(∂B) : ψ ∈ L∞s (∂B), ψ̂(m) = αm, m ≥ 0}.
(9)

Proof. Let ϕ be the generating function of the sequence α, ϕ(q) =
∑

n∈N q
nαn. Theorem 1.3 (proved

in [6]) states that Γα is bounded if and only if ϕ belongs to the space BMOA(∂B) of slice regular
BMO functions. Recalling Proposition 8, we get that ϕ is in BMOA(∂B) if and only if there exists
ψ ∈ L∞s (∂B) such that P+ψ = ϕ, namely such that ψ̂(m) = αm for any m ≥ 0, thus proving the first
part of the statement.

Suppose now that the operator Γα is bounded. To estimate its norm, consider the bilinear operator
Gα associated with Γα, defined on the dense subset of couples of finitely supported sequences (a =
{an}n∈N, b = {bn}n∈N) in `2(N,H)× `2(N,H) by

Gα(a, b) :=
〈
b,Γαa

〉
`2(N,H)

=
∑
n≥0

∑
k≥0

αn+kakbn.

It is not difficult to see that Gα is bounded if and only if Γα does, and

sup
c,d∈`2(N,H),c,d 6=0

|Gα(c, d)|
‖c‖`2(N,H) · ‖d‖`2(N,H)

= ‖Γα‖B(`2(N,H)).

Let f(q) := ǎ(q) =
∑

n≥0 q
nan and g(q) := b̌(q) =

∑
n≥0 q

nbn be polynomials in H2(∂B). Then

Gα(a, b) =
∑
n≥0

∑
j≥0

αjaj−nbn =
∑
j≥0

αj

j∑
n=0

aj−nbn = 〈f ? g, ϕ〉L2
s(∂B) . (10)

Moreover, the previous equality holds true for any ψ ∈ L∞s (∂B) such that P+ψ = ϕ. Thus, for such a
ψ, we can write

|Gα(a, b)| =
∣∣∣〈f ? g, ψ〉L2

s(∂B)

∣∣∣ =

∣∣∣∣∫
∂B
ψ(q)(f ? g)(q)dΣ(q)

∣∣∣∣ ≤ ∫
S
dσ(I)

∫ 2π

0

∣∣∣ψ(eIt)
∣∣∣ ∣∣f ? g(eIt)

∣∣ dt
≤ ‖ψ‖L∞(∂B)

∫
S
dσ(I)

∫ 2π

0

∣∣f(eIt)
∣∣ ∣∣g(eJt)

∣∣ dt
12



where J = (f(eIt))−1If(eIt) is determined in view of Proposition 2.1 (the fact that f ∈ H2(∂B)
guarantees that if f 6≡ 0, then it is non vanishing almost everywhere at the boundary, see [11]). Using
Representation Formula (4), we have

|g(eJt)| ≤ |g(eIt)|+ |g(e−It)|,

so that

|Gα(a, b)| ≤ ‖ψ‖L∞(∂B)

(∫
S
dσ(I)

∫ 2π

0

∣∣f(eIt)
∣∣ ∣∣g(eIt)

∣∣ dt+

∫
S
dσ(I)

∫ 2π

0

∣∣f(eIt)
∣∣ ∣∣g(e−It)

∣∣ dt) .
By Cauchy-Schwarz inequality we get then

|Gα(a, b)| ≤ 2‖ψ‖L∞(∂B) · ‖f‖L2
s(∂B) · ‖g‖L2

s(∂B) (11)

where we used the fact that if g̃(q) = g(q̄) then ‖g̃‖L2
s(∂B) = ‖g‖L2

s(∂B) for any g ∈ H2(∂B). By density
of finitely supported sequences in `2(N,H), we obtain

‖Γα‖B(`2(N,H)) = ‖Gα‖B(`2(N,H)×`2(N,H)) ≤ 2‖ψ‖L∞(∂B).

The fact that ψ is an arbitrary element of L∞s (∂B) such that P+ψ = ϕ yields that

‖Γα‖B(`2(N,H)) ≤ 2 inf{‖ψ‖L∞(∂B) : ψ ∈ L∞s (∂B), ψ̂(m) = αm, m ≥ 0}.

On the other hand, since ϕ(q) =
∑

n≥0 q
nαn belongs to BMOA(∂B), which, as stated by Theorem

5.6 in [6], is the dual space of H1(∂B), we have that the linear operator Λα : H1(∂B)→ H given by

Λαh := 〈h, ϕ〉L2
s(∂B) =

∑
n≥0

αnĥ(n),

is well defined for any h(q) =
∑

n≥0 q
nĥ(n) ∈ H1(∂B). As proven in [6], we can identify H1(∂B)

with H2(∂B) ? H2(∂B) +H2(∂B) ? H2(∂B), where the norm is defined as

‖h‖H2(∂B)?H2(∂B)+H2(∂B)?H2(∂B)

= inf
{ ∑
t=1,2

‖ft‖H2(∂B) · ‖gt‖H2(∂B) : h =
∑
t=1,2

ft ? gt, ft, gt ∈ H2(∂B)
}
.

Hence if h ∈ H1(∂B) decomposes as h = f1 ? g1 + f2 ? g2, with ft(q) =
∑

n≥0 q
n(at)n, gt(q) =∑

n≥0 q
n(bt)n ∈ H2(∂B), for t = 1, 2, we can write

Λα(h) =
∑
n≥0

αn

n∑
k=0

(a1)k(b1)n−k +
∑
n≥0

αn

n∑
k=0

(a2)k(b2)n−k = Gα(a1, b1) +Gα(a2, b2).

If Γα (and hence Gα) is bounded, then

|Λα(h)| ≤ ‖Gα‖B(`2(N,H)×`2(N,H))

(
‖a1‖`2(N,H) · ‖b1‖`2(N,H) + ‖a2‖`2(N,H) · ‖b2‖`2(N,H)

)
= ‖Gα‖B(`2(N,H)×`2(N,H))

(
‖f1‖H2(∂B) · ‖g1‖H2(∂B) + ‖f2‖H2(∂B) · ‖g2‖H2(∂B)

)
.
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Since the decomposition h = f1 ? g1 + f2 ? g2 is arbitrary, taking the infimum on all possible decompo-
sitions of h in H2(∂B) ? H2(∂B) +H2(∂B) ? H2(∂B), we get

|Λα(h)| ≤ ‖Gα‖B(`2(N,H)×`2(N,H))‖h‖H2(∂B)?H2(∂B)+H2(∂B)?H2(∂B)

and hence that
‖Λα‖B(H2(∂B)?H2(∂B)+H2(∂B)?H2(∂B)) ≤ ‖Γα‖B(`2(N,H)). (12)

Since H2(∂B) ? H2(∂B) + H2(∂B) ? H2(∂B) = H1(∂B) is a linear subspace of L1
s(∂B), by the

quaternionic Hahn-Banach Theorem 3.4 we can extend Λα to a bounded linear operator Λ̃ on L1
s(∂B)

with same norm. Recalling Theorem 3.5, we get then that there exists ψ ∈ L∞s (∂B) such that Λ̃(f) =
〈f, ψ〉L2

s(∂B) for any f ∈ L1(∂B) and such that

‖Λα‖B(H2(∂B)?H2(∂B)+H2(∂B)?H2(∂B)) = ‖Λ̃‖B(L1(∂B)) = ‖ψ‖L∞(∂B).

Moreover, since Λ̃|H2(B)?H2(B)+H2(B)?H2(B)
= Λα, we get that P+ψ = ϕ and hence we conclude

inf{‖ψ‖L∞(∂B) : ψ ∈ L∞s (∂B), ψ̂(m) = αm, m ≥ 0} ≤ ‖Γα‖B(`2(N,H)).

Hankel operators admit also a realization as operators from the Hardy spaceH2(∂B) to its orthogonal
complement H2

−(∂B). Let ϕ ∈ L2
s(∂B) have power series expansion ϕ(q) =

∑
n∈Z q

nϕ̂(n). On the
dense subset of polynomials in H2(∂B), we can define the operator associated with ϕ

Hϕ : H2(∂B)→ H2
−(∂B)

as
Hϕf = P−(ϕ ? f). (13)

If we do explicit computations we get

Hϕf = P−
(∑
n∈Z

qn
∑
k∈Z

ϕ̂(n− k)f̂(k)
)

=
∑
n<0

qn
∑
k≥0

ϕ̂(n− k)f̂(k). (14)

Hence the matrix associated with Hϕ with respect to the basis {qn}n≥0 of H2(∂B) and {q̄n}n≥0 of
H2
−(∂B), is the Hankel matrix (ϕ̂(n− k))n<0,k≥0.

With this in mind, the characterization of bounded Hankel operators, acting onH2(∂B), can be given
in the following way.

Theorem 4.2. Let ϕ(q) =
∑

n∈Z q
nϕ̂(n) ∈ L2

s(∂B). The following conditions are equivalent:

(1) Hϕ is bounded on H2(∂B);

(2) there exists ψ ∈ L∞s (∂B) such that ψ̂(m) = ϕ̂(m) for any m < 0;

(3) P−ϕ ∈ BMO(∂B).
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If one of these conditions holds, then

inf{‖ψ‖L∞(∂B) : ψ ∈ L∞s (∂B), ψ̂(m) = ϕ̂(m), m < 0} ≤ ‖Hϕ‖B(H2(∂B))

≤ 2 inf{‖ψ‖L∞(∂B) : ψ ∈ L∞s (∂B), ψ̂(m) = ϕ̂(m), m < 0}.
(15)

Proof. Consider the sequence ϕ̂ := {ϕ̂(−n)}n≥0 ∈ `2(N,H). Equation (14) implies thatHϕ is bounded
onH2(∂B) if and only if the operator Γϕ̂ is bounded on `2(N,H). The equivalence of statements (1) and
(2) is therefore a consequence of Theorem 4.1: Γϕ̂ is bounded if and only if there exists ψ ∈ L∞s (∂B)

such that ψ̂(m) = ϕ̂(−m) for any m ≥ 0 which, considering ψ(q̄), is equivalent to condition (2).
The equivalence of (2) and (3) can be proven as follows. First, Proposition 3.9 states that (3) is

equivalent to the existence of a function ψ ∈ L∞s (∂B) such that P−ψ = P−ϕ. Then, since ψ ∈ L∞s (∂B)
if and only if ψc ∈ L∞s (∂B) (see Proposition 3.6) and the projection operator P− commutes with the
regular conjugation, we conclude that P−(ψc) = P−(ϕc), i.e. that ψc is the function that realizes
condition (2).

Inequalities (15) are a direct application of inequalities (9) to the operator Γϕ̂.

Equivalence of conditions (1) and (2) in particular says that ϕ in L2
s(∂B) is such that Hϕ is bounded

if and only if there exists ψ ∈ L∞s (∂B) such that Hϕ = Hψ. In fact equation (14) implies that Hϕ

depends only on the negative coefficients of ϕ. Thus the class of bounded Hankel operators on H2(∂B)
is covered by operators of the form Hϕ with a bounded symbol ϕ ∈ L∞s (∂B). We can finally prove the
announced result relating the norm of a Hankel operator with the L∞-distance of its symbol from the
space of bounded slice regular functions.

Theorem 4.3. Let ϕ ∈ L∞s (∂B). Then

‖Hϕ‖B(H2(∂B)) = inf{‖ϕ− f‖L∞(∂B) : f ∈ H∞(∂B)}. (16)

Proof. Let ψ ∈ L∞s (∂B) be such that P−ψ = P−ϕ. Then Hϕ = Hψ and

‖Hϕ‖B(H2(∂B)) = ‖Hψ‖B(H2(∂B)) = sup
f∈H2(∂B),f 6≡0

‖Hψ(f)‖L2
s(∂B)

‖f‖L2
s(∂B)

.

Since Hψ is bounded, we can express it as a projection (extending definition (13) to the whole H2(∂B)),
thus obtaining

‖Hψ(f)‖L2
s(∂B) = ‖P−(ψ ? f)‖L2

s(∂B) ≤ ‖ψ ? f‖L2
s(∂B) = ‖(ψ ? f)c‖L2

s(∂B) (17)

= ‖f c ? ψc‖L2
s(∂B) ≤ ‖f

c‖L2
s(∂B)‖ψ

c‖L∞(∂B),

where we used Proposition 2.2 and where the last inequality follows from the integral form (5) of the
slice L2 norm and from Proposition 2.1: if f ∈ H2(∂B) and f 6≡ 0, then f c ∈ H2(∂B) and it is almost
everywhere non-vanishing on ∂B so we can write

‖f c ? ψc‖L2
s(∂B) =

∫
∂B
|f c(eIt)||ψc(f c(eIt)−1eItf c(eIt))|dΣ(eIt) ≤

∫
∂B
|f c(eIt)|dΣ(eIt)‖ψc‖L∞(∂B).
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Recalling that for any f ∈ H2(∂B) ⊂ L2
s(∂B), ‖f‖L2

s(∂B) = ‖f c‖L2
s(∂B) and that, thanks to Proposition

3.6, for any ψ ∈ L∞s (∂B), ‖ψ‖L∞(∂B) = ‖ψc‖L∞(∂B), we get

‖Hψ(f)‖L2
s(∂B) ≤ ‖f‖L2

s(∂B)‖ψ‖L∞(∂B), (18)

and hence that
‖Hϕ‖B(H2(∂B)) ≤ ‖ψ‖L∞(∂B).

Since ψ was an arbitrary element of L∞s (∂B) such that P−ψ = P−ϕ, we obtain that

‖Hϕ‖B(H2(∂B)) ≤ inf{‖ψ‖L∞(∂B) : ψ ∈ L∞s (∂B), ψ̂(m) = ϕ̂(m),m < 0}

and hence, recalling the first inequality in (15), that

‖Hϕ‖B(H2(∂B)) = inf{‖ψ‖L∞(∂B) : ψ ∈ L∞s (∂B), ψ̂(m) = ϕ̂(m),m < 0}

which is a reformulation of equality (16): on the one hand ϕ− f ∈ L∞s (∂B) and P−(ϕ− f) = P−ϕ for
any f ∈ H∞(∂B); on the other hand ϕ− ψ ∈ H∞(∂B) for any ψ ∈ L∞s (∂B) such that P−ψ = P−ϕ.

To prove that the infimum in equation (16) is attained for any ϕ ∈ L∞s (∂B) we need the following
version of Montel Theorem for slice regular functions.

Theorem 4.4. Let {fn} be a uniformly bounded family of slice regular functions on B. Then {fn} has a
subsequence convergent uniformly on compact sets to a slice regular function.

Proof. Let I ∈ S be any imaginary unit and let J ∈ S, J orthogonal to I . For any n, consider the
restriction fI,n of fn to BI . Thanks to the Splitting Lemma (see [13]), for any n, there exist two holo-
morphic functions FI,n, GI,n such that fI,n = FI,n+GI,nJ . Since for any n |fI,n|2 = |FI,n|2 + |GI,n|2
we get that both FI,n and GI,n are uniformly bounded. Thanks to the classical Montel Theorem, up to
subsequences both FI,n and GI,n converge uniformly on compact sets to holomorphic functions F and
G respectively. Hence, up to subsequences, fI,n converges uniformly on compact sets to fI := F +GJ .
Extending fI by means of the representation formula (4) we get that, up to subsequences, fn converges
uniformly on compact sets to f := ext(fI). The uniform convergence guarantees that f is slice regu-
lar.

Now we can show that the infimum in equation (16) is in fact a minimum.

Proposition 4.5. Let ϕ ∈ L∞s (∂B). Then there exists g ∈ H∞(∂B) realizing the distance of ϕ from the
space of bounded slice regular functions, that is such that

‖Hϕ‖B(H2(∂B)) = ‖ϕ− g‖L∞(∂B).

Such a g is called an L∞-best approximation of ϕ by a slice regular function.

Proof. Let m = inf{‖ϕ − f‖L∞(∂B) : f ∈ H∞(∂B)}. Since the zero function is a competitor, we get
that m ≤ ‖ϕ‖L∞(∂B). If m = ‖ϕ‖L∞(∂B), then the zero function is the desired best approximation slice
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regular function. Otherwise, let {fn} be a minimizing sequence, i.e. a sequence of functions inH∞(∂B)
such that limn→∞ ‖ϕ− fn‖L∞(∂B) = m. Then, for n sufficiently large, we have

‖fn‖L∞(∂B) − ‖ϕ‖L∞(∂B) ≤ ‖ϕ− fn‖L∞(∂B) ≤ ‖ϕ‖L∞(∂B)

that implies
‖fn‖L∞(∂B) ≤ 2‖ϕ‖L∞(∂B),

i.e. that {fn} is uniformly bounded. Theorem 4.4 lead us to conclude.

A natural question is then investigate the uniqueness of such a function. As in the complex case (see
[18]) we can prove the following.

Theorem 4.6. Let ϕ ∈ L∞s (∂B) be such that Hϕ attains its norm on the unit ball of H2(∂B), that is
such that ‖Hϕ‖B(H2(∂B)) = ‖Hϕg‖L2

s(∂B) for some g ∈ H2(∂B) with ‖g‖L2
s(∂B) = 1. Then there exists

a unique f ∈ H∞(∂B) such that

‖ϕ− f‖L∞(∂B) = distL∞(ϕ,H∞(∂B)).

Proof. Suppose without loss of generality that ‖Hϕ‖B(H2(∂B)) = 1, and let f ∈ H∞(∂B) be such that

‖ϕ− f‖L∞(∂B) = ‖Hϕ‖B(H2(∂B)) = 1.

Then, since g realizes the norm of Hϕ, and Hϕ = Hϕ−f (since P−ϕ = P−(ϕ − f)), proceeding as we
have done in the proof of Theorem 4.3 to obtain (17) and (18), we get

1 = ‖Hϕ‖B(H2(∂B)) = ‖Hϕ−f‖B(H2(∂B)) = ‖Hϕ−fg‖L2
s(∂B) = ‖P−((ϕ− f) ? g)‖L2

s(∂B)

≤ ‖(ϕ− f) ? g‖L2
s(∂B) ≤ ‖g‖L2

s(∂B)‖ϕ− f‖L∞(∂B) = ‖g‖L2
s(∂B) = 1.

Therefore all inequalities are equalities, and in particular

‖P−((ϕ− f) ? g)‖L2
s(∂B) = ‖(ϕ− f) ? g‖L2

s(∂B)

which means that (ϕ− f) ? g ∈ H2
−(∂B) and that

Hϕg = Hϕ−fg = (ϕ− f) ? g.

Recalling that the symmetrization of a function in H2(∂B) belongs to H1(∂B) and that functions in
H1(∂B) are nonvanishing almost everywhere at the boundary (see [11]), we can consider the regular
reciprocal of g, g−? = (gs)−1gc, and obtain f as

f = ϕ−Hϕg ? g
−?

where Hϕg ? g
−? does not depend on g (if g̃ ∈ H2(∂B) is such that ‖Hϕ‖B(H2(∂B)) = ‖Hϕg̃‖L2

s(∂B)
with ‖g̃‖L2

s(∂B) = 1, then, using the same arguments used for the function g, we get that Hϕg̃ ? g̃
−? =

Hϕg ? g
−? = ϕ− f ). Therefore we get that f is uniquely determined by ϕ.
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We conclude this paper with a characterization of Hankel operators involving shift operators, that
reflects the one holding in the complex case, see [18].
Let S : L2

s(∂B)→ L2
s(∂B) denote the bilateral shift operator,

(Sf)(q) = q ? f(q) = qf(q) for any f ∈ L2
s(∂B),

whose adjoint is (S∗f)(q) = q̄ ? f(q), and let T : H2(∂B)→ H2(∂B) denote the right shift operator,

(Tf)(q) = q ? f(q) = qf(q) for any f ∈ H2(∂B)

whose adjoint is the left (or backward) shift operator introduced in [3], (T ∗f)(q) = q−1(f(q) − f(0)).
Notice that the operators P− and S do commute.

Theorem 4.7. Let R : H2(∂B)→ H2
−(∂B) be a bounded operator. Then R is a Hankel operator if and

only if
P−SR = RT. (19)

Proof. Suppose first that R is a Hankel operator, R = Hϕ with ϕ ∈ L∞s (∂B). Then, for any f ∈
H2(∂B),

P−SRf(q) = P−SHϕf(q) = P−SP−ϕ ? f(q) = P−q ? ϕ ? f(q)

= P−ϕ ? q ? f(q) = HϕSf(q) = HϕTf(q) = RTf(q).

Let now R be an operator satisfying equation (19). To complete the proof we need to show that the
matrix associated with R with respect to the bases {qn}n≥0 of H2(∂B) and {q̄n}n>0 of H2

−(∂B) is a
Hankel matrix. For any j ≥ 1, k ≥ 1,〈

Rqj , q̄k
〉
L2
s(∂B)

=
〈
RTqj−1, q̄k

〉
L2
s(∂B)

=
〈
P−SRqj−1, q̄k

〉
L2
s(∂B)

=
〈
SRqj−1, q̄k

〉
L2
s(∂B)

=
〈
Rqj−1, S∗q̄k

〉
L2
s(∂B)

=
〈
Rqj−1, q̄k+1

〉
L2
s(∂B)

which is the condition for R to be a Hankel operator.
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