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Context and Notation: LCK structures

Let (M2n, J) be a complex manifold of complex dimension n � 2.

A Hermitian metric g is locally conformally Kähler (lcK) if

p

U

9 fU on U s.t. e
�fU g|U is Kähler

q

V, fV on V s.t. e
�fV g|V is Kähler

dfU|U\V = dfV |U\V =: ✓ (Lee form)

d⌦ = ✓ ^ ⌦ (for ⌦ := g(J·, ·))

Notation:

• (g,⌦, ✓) is an lcK structure on (M, J). Assume ✓ 6= 0 (i.e. g is not Kähler).

• T := ✓]g (Lee vector field)



Special case: Vaisman structures

An lcK structure (g,⌦, ✓) is called Vaisman if ✓ is parallel: r
g✓ = 0.

Some properties of Vaisman structures:

• A Vaisman structure on (M, J) is (up to scaling) uniquely determined by ✓:

⌦ =
1

|✓|2
g

(✓ ^ J✓ � dJ✓)

• T and JT are commuting holomorphic Killing vector fields.

• If M is compact and of Vaisman-type, then:

I all Vaisman structures have the same Lee vector field (up to R+
).

I the Lee forms of all Vaisman structures form a convex cone in ⌦1(M).

Notation:

• R+
T0 denotes the space of Lee vector fields of all Vaisman structures.

• Assume that Vaisman structures (g,⌦, ✓) are normalized: |✓|g = 1.



LCK structures with holomorphic Lee vector field

Let (M, J) be a compact complex manifold.

Let (g,⌦, ✓, T) be an lcK structure on (M, J) with T holomorphic.

Previous results:

• A. Moroianu, S. Moroianu, L. Ornea:

I |T|g is constant =) (g,⌦, ✓, T) is Vaisman.

I T is divergence-free =) (g,⌦, ✓, T) is Vaisman.

I examples of non-Vaisman (g,⌦, ✓, T) with T holomorphic

(on (M, J) of Vaisman-type and T 2 R+
T0).

• N. Istrati: ⌦ = a(✓ ^ J✓ � dJ✓), a 2 R⇤ =) (g,⌦, ✓, T) is Vaisman.

• F. Belgun: examples of (g,⌦, ✓, T) with T holomorphic on (M, J)
which is not of Vaisman-type.

Our goal: on a compact manifold of Vaisman-type:

Which holomorphic vector fields occur as Lee fields of lcK structures?

Which are these lcK structures?



Holomophic Lee vector fields on Vaisman-type manifolds

Let (M, J) be a compact complex manifold of Vaisman-type.

Let R+T0 be the space of Lee vector fields of Vaisman structures on (M, J).

Let (g,⌦, ✓, T) be an lcK structure on (M, J) with T holomorphic.

Remark JT is Killing w.r.t. g (because LJT⌦ = 0 by Cartan’s formula).

How is T related to R+T0?

Theorem (F. Madani, A. Moroianu, -)

There exists an adapted Vaisman structure (g0,⌦0, ✓0) on (M, J), i.e.

[✓0] = [✓] and ✓0(JT) = 0

and a positive function h 2 C
1(M) s.t.

T= hT0�grad
g0h.

In particular, LJT✓0 = 0, so JT is holomorphic Killing on (M, J, g0).



1
st

Step: Existence of an adapted Vaisman structure

Given (g,⌦, ✓, T) an lcK structure with T holomorphic.

(1) There exists a Vaisman structure (g1,⌦1, ✓1) with [✓1] = [✓].
(! use so-called deformations of type I of Vaisman structures)

(2) Define by an averaging process:

✓0 :=

Z

�2G

�⇤✓1 dµ 2 ⌦1(M)

where G := {'t} (the closure of the flow 't of JT , Killing w.r.t. g) is a

compact torus in Iso(M, g) with Haar measure dµ.Then:

• [✓0] = [✓1].

• LJT✓0 = 0 () ✓0(JT) = 0, by Cartan’s formula and M-compact).

• ✓0 defines a Vaisman structure.

(! the set of Lee forms of Vaisman structures is a convex cone)



2
nd

Step: Holomorphic Killing vector fields of Vaisman str.

Proposition

Let (M, J, g0,⌦0, ✓0) be compact Vaisman with Lee vector field T0.

Then any holomorphic Killing vector field K on (M, J, g0) is of the form:

K = cT0 + hJT0 + K0

where:

• K0 2 {T0, JT0}
?

• c is a constant

• h 2 C
1(M) satisfies:

K0y⌦0 = dh and T0(h) = JT0(h) = 0.

The function h is called the Hamiltonian of K.



3
rd

Step: The positivity of the Hamiltonian

• T is nowhere vanishing

• [✓] = [✓0] =) ✓ = ✓0 + df and:

|T|
2

g
= h + hT0(f )� hdf , dhig0

> 0

• if m := min
M

h, then we obtain at p 2 h
�1(m):

m(1 + T0(f )(p)) > 0 =) m 6= 0

• assuming m < 0, implies T0(f )(p) < �1, for all p 2 h
�1(m)

T0 parallel w.r.t. g0 =) � :=integral curve of T0 is complete geodesic

T0(f )(�(t))
T0(h)=0

= T0(f )(p) < �1, 8t 2 R E
f is bounded

=) m > 0



Holomophic Lee vector fields on Vaisman-type manifolds

Theorem (F. Madani, A. Moroianu, -)

Let (M, J) be a compact complex manifold of Vaisman-type.

If (g,⌦, ✓, T) is an lcK structure on (M, J) with T holomorphic, then

there exists an adapted Vaisman structure (g0,⌦0, ✓0) on (M, J), i.e.

[✓0] = [✓] and ✓0(JT) = 0

and a positive function h 2 C
1(M) s.t.

T= hT0�grad
g0h.

In particular, LJT✓0 = 0, so JT is holomorphic Killing on (M, J, g0).

Conversely, if (g0, ✓0, T0) is a Vaisman structure and K a holomorphic

Killing vector field on (M, J, g0) with positive Hamiltonian and vanishing

T0-component, then �JK is the Lee vector field of an lcK structure.



The space of holomorphic Lee vector fields

HL(M, J) := set of holomorphic vector fields which occur as Lee fields

of some lcK structure on (M, J) - compact of Vaisman-type.

I Description of HL(M, J) in terms of Vaisman structures:

HL(M, J) =

8
<

:T := hT0 � grad
g0h

(g0,⌦0, ✓0, T0) is Vaisman,
JT is holomorphic and Killing w.r.t. g0,

h 2 C
1(M,R+)

9
=

;

I Intrinsic description of HL(M, J):

Theorem (F. Madani, A. Moroianu, -)

A holomorphic vector field T belongs to HL(M, J) if and only if the

following two conditions are satisfied:

(i) JT is of Killing-type.

(ii) 8p 2 M: T(p) 2 RT0(p)� RJT0(p) =) T(p) 2 R+
T0(p).



La Mult,i Ani, Liviu!


