Geometria Complessa e Geometria Differenziale
Geometria Complessa e Geometria Differenziale
home | mail | people | news | seminars | events | open positions | login

Summer school "Motives for periods"

created by daniele on 31 Jan 2017

28 aug 2017 - 1 sep 2017

Freie Universität, Berlin

{{the content of this page was copy and pasted from the origin announcement email or website; please refer to the links for updates and inquiries}}

August 28 — September 1, 2017, Freie Universität, Berlin.

Periods are complex numbers obtained by integrating algebraic differential forms over algebraically-defined domains. From the modern point of view, they appear as coefficients of the comparison isomorphism between de Rham and Betti cohomology of varieties over number fields. This is how motives enter the game.

The aim of this summer school is to introduce students to the applications of different categories of motives to concrete questions on periods. The possibility of giving non-conjectural constructions of the motivic Galois group has opened the way to major new results, including a proof of Hoffman's conjecture on multiple zeta values by F. Brown, and a proof of a geometric analogue of the Kontsevich-Zagier conjecture by J. Ayoub. There will be three mini-courses

1) "Triangulated categories of motives and the Kontsevich-Zagier conjecture" by J. Ayoub.

2) "Mixed Tate motives and multiple zeta values" by C. Dupont

3) "Exponential motives and exponential periods " by P. Jossen

plus additional research talks by I. Dan Cohen, M. Gallauger, B. Morin, E. Panzer, S. Ünver.

More informations can be found on the website

To register, send an e-mail to motivesberlin (AT)

The organizers
G. Ancona, J. Fresán, S. Pepin Lehalleur

Scientific committee
J. I. Burgos Gil, F. Charles, H. Esnault

Credits | Cookie policy | HTML 4.0.1 strict | CSS 2.1